
From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 1 of 9

IBM Global Services

From Realism to Reality:
Making the Case for Performance Engineering

Presented at the Workshop on Performance and Reliability
October 2nd – 4th, 2003
New York, NY

Dave Jewell
Consulting IT Specialist, IBM Corporation
455 Park Place
Lexington, KY 40511 USA
e-mail: jewell@us.ibm.com
Phone: 1-859-243-3338

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 2 of 9

Introduction

When done well, performance testing can bring needed discipline and accountability to bear in the
development of IT solutions. However, even a realistic performance test can be "too little, too late",
especially in a project where performance problems are rooted in architectural and design choices that
cannot be corrected by mere coding fixes. In this paper, the author recounts his personal experience with
one such project and gives examples of how the proper use of performance engineering techniques can
help architects, developers and testers get "reality checks" on system performance earlier in the
development process.

Note: The observations, viewpoints and conclusions expressed in this paper are those of the author, and
do not necessarily represent the viewpoints of IBM or its management.

About the Author

Dave Jewell is a Consulting IT Specialist with IBM Global Services. In his 25-year career with IBM, he
has held a variety of technical positions related to software development and testing. Since 1989, Dave’s
assignments have mostly related to performance testing, performance analysis or performance
engineering. More recently, Dave served as the lead subject matter expert in the development of two
online performance testing classes that are now offered to IBM employees via IBM’s internal education
directory.

Dave and his family reside in Lexington, KY.

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 3 of 9

1 Setting the Stage

1.1 The Story Begins

The story began in early 1998, when an IBM Global Services project team was assembled to re-engineer
an IBM internal service call management solution that had been used successfully in North America, as a
first step toward deploying the re-engineered solution worldwide. The main components of the existing
solution which were to be changed are generically described in the following table.

Component Description Platform (OS /
Middleware /
Database)

History Networking
Protocol

Voice call
management /
Core repository

Traditional
centralized call
center
representatives
accept voice calls
for service and enter
them in system

MVS1 / CICS2 /
IMS3

Developed in
early1980s,
regularly
enhanced

SNA4 LU2
(mainframe
terminal session)

Electronic call
facility

Accepts service call
data from customer-
managed call
centers, provides
call status updates

MVS / CICS / DB25 Developed in
early 1990s,
regularly
enhanced

SNA LU0, SNA
LU6.2, TCP/IP

Technician
communication
facility

Exchanges service
call status and
dispatching
information with field
technicians’ hand-
held devices

Proprietary network
hardware and
software
technology bridging
between mainframe
and private RF
network
environments.

Developed in
mid-1980s,
periodically
enhanced

SNA LU6.2
(interface between
bridge and
mainframe)

1 Multiple Virtual Systems (MVS) was and is an IBM mainframe operating system which is now encompassed in
the IBM OS/390 product family.
2 Customer Information Control System (CICS) was and is a family of IBM online transaction processing (OLTP)
middleware products.
3 Information Management System (IMS) was and is an IBM mainframe product which included both hierarchical
database and OLTP functionality. In this project, only the hierarchical database feature of IMS was used.
4 Systems Network Architecture (SNA) was and is a proprietary IBM network architecture. The applications
described here used LU0, LU2 and LU6.2, which are specific SNA communications protocols.
5 DB2 was and is a family of IBM relational database products.

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 4 of 9

1.2 Good Intentions

Key requirements and implementation features of the project included the following:

1. The addition of a scheduling component to further optimize and automate dispatching of the field
technicians.

2. The enhancement of the core repository to support worldwide deployment, especially with respect
to non-North American geographies.

3. The conversion of the core service call repository database from IMS to DB2.

Due to the perceived business urgency of this solution, the project plan for the first release of the re-
engineering project had an aggressive schedule with high risk, factors which would come to haunt the
project later. Work began on planning for the performance testing in July 1998. The performance test
plan had the following major characteristics.

• Because the existing components had all undergone performance testing before, the
performance test effort would benefit from the ability reuse most of the automated performance
testing scripts which would be needed.

• IBM Teleprocessing Network Simulator (TPNS)6 was used for the performance testing of all
components except one. For the lone exception, the technician communication facility, the
“bridge” workload was simulated using custom C++ tools running on an AIX / RS/6000 server.

• While the coordination of all of this automated testing was a complex undertaking, the basic
approach to the test was fairly simple; simulate the projected load for a peak hour for both the
existing system and the new system, then compare the results of the two tests.

• Since the major mainframe test systems shared a large partitioned mainframe with the production
system, most major performance tests had to be scheduled off-shift to minimize interference
between production and performance test.

• One of the lead architects for re-engineered solution was a big believer in the value of
performance testing, and was personally on hand during many of the off-shift tests to monitor the
performance of the systems under test.

Systemic performance problems led to the cancellation of the project after over 18 months and $3.5
million had been spent. The reasons for this contributed to the author’s decision to become an advocate
and practitioner of performance engineering.

6 Teleprocessing Network Simulator (TPNS) was and is an IBM network simulation product used for a variety of
purposes, including load/stress testing, regression testing and validation of proposed network environments. Its
primary strength is its support for SNA and other IBM legacy networking technologies.

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 5 of 9

2 So What Happened?

2.1 Read ‘em and Weep!

As one might expect, the project encountered numerous problems in addition to those related to
performance. The project started to run behind schedule and over budget. Numerous functional defects
were found, and the initial results of performance tests of the re-engineered system were cause for
concern, especially with respect to the core service call management repository. However, at the time
these were not viewed as insurmountable problems. Fixes were delivered for many of the functional
defects, and extra time was given to revisit some of the database-intensive programs, with the rationale
being that many of the needed improvements would be gained by applying standard relational database
performance improvement measures (e.g. eliminating table scans and index scans).

For the functional defects, this optimistic outlook appeared to be justified. Many defects were resolved
and overall defect rates declined, indicating that the re-engineered solution was being to stabilize
functionally. However, performance defects, although few in number, were not being resolved. Even
after additional weeks were spent attempting to improve performance, one test showed that the new
solution used five times as much CPU as the current solution for the core service call management
repository. While the cause was not fully understood, suspicion now turned to newly developed database
access routines being used to manage access the DB2 table.

By now it was April of 1999, and it was apparent that these problems could not be resolved prior to IBM’s
self-imposed Y2K “freeze” deadline. Furthermore, the magnitude of the excessive CPU utilization made it
infeasible to resolve the problem simply by allocating additional mainframe capacity. As a result, the
deployment of this release was canceled. While some solution components were used in later releases,
the customer organization elected not to attempt to deploy the re-engineered solution as a whole in 2000
after the Y2K freeze had been lifted.

2.2 What Can We Learn?

It is easy to be critical of the handling of this or any other failed project, especially having the luxury of
hindsight. However, the reason for citing this example is not to criticize, but to glean the lessons learned
so that hindsight from this project can become foresight which can be applied to future projects.

From a testing perspective, this project served as an object lesson in the difference between functional
defects and performance defects. Experienced performance testers understand that their job is in many
respects different than that of functional testers. Though both may use automation, the tools and their
usage are often different, the means of detecting non-conformance is different, the nature of the non-
conformances found is very different, and very often the level of effort required to resolve problems is
different. In this case, functional quality (as measured by defect trends) eventually improved as functional
testing and remediation ran its course, whereas performance problems tended to be stubborn and
unyielding. This would indicate that defect rate models (used to predict when a release will be ready to
ship based on statistical defect trends) may not always be as helpful in dealing with performance
readiness as they might be in dealing with functional readiness.

From a development perspective, the challenges faced when significantly modifying a mature system
were underscored. In the many years preceding this re-engineering project, a great deal of work had
already gone into getting the most out of the CICS (OLTP) and IMS (database) technologies used in the
legacy solution. Furthermore, the bulk of the application programming had been done in an IBM internal
language known as PL/S, which allowed nearly the same execution efficiency as assembler language
programming. The re-engineered solution replaced IMS with DB2 (for which some performance impact
was expected) and introduced C++ object-oriented database access routines to enhance portability. It
was the latter implementation choice to which the drastic increases in CPU utilization were ultimately
attributed.

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 6 of 9

From a project perspective, the performance risks discussed above were not brought to light in time to
identify and resolve impacts before deployment. The pressure to deliver a solution quickly would have
discouraged the development team from spending time on early performance studies to validate the
design approach, even if they had anticipated the risks in this area. Although the performance team
succeeded in delivering a “realistic” performance test, the “reality check” came too late in the process to
facilitate a successful deployment.

The bottom line: We must find better ways to identify and mitigate performance risks by introducing
performance “realism” into earlier parts of the development cycle.

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 7 of 9

3 Addressing Performance from the Perspective of Risk

In many respect, IT performance specialists have a great deal in common with our colleagues in project
management. Both disciplines deal with the trade-offs between resource, work and time, and both
disciplines must manage risk. The follwing list characterizes approaches that might be used to managing
increasing levels performance risk.

• Performance verification - Regression test of a system with minor changes, with little to no
change in performance attributes expected

• Performance validation - Testing to performance requirements where performance risks are

"moderate", assuming development has used reviews and testing to address performance
concerns as well

• Performance engineering - Performance risk is centrally managed throughout the development

/ test / deployment cycle, especially for complex solutions where performance risk is high. A
variety of techniques may be used (modeling, prototyping, testing, monitoring) to achieve this
end.

It can be argued that all of these approaches are in fact different levels of what we refer to as
performance engineering, with the level of effort and scrutiny made commensurate to the level of
performance risk. To use a medical illustration, proper risk management for our re-engineering project
example could be compared to risk management used for a heart transplant.

Area of Comparison Re-engineering Project Heart Transplant
Objective A change to the core database is

needed to extend an application’s
useful life and scope.

A heart transplant is needed to extend
the length and quality of the patient’s
life.

Managing Quality
Risks

Reviews and testing will be done to
make sure the new application
works as designed.

Careful planning, training, rehearsals
and monitoring take place to make
sure the operation is done correctly
and proceeds smoothly.

Managing Performance
Risks

Prototype testing of the database
access routine takes place
BEFORE the overall performance
test to make sure that the re-
engineered solution can perform
successfully.

Careful testing and examination of the
real (or artificial) heart to be
transplanted is done before the
actualtransplant operation takes place.

Clearly, then, there are times that additional emphasis must be placed on using methods (such as the
early performance prototyping suggested above) that will give us earlier answers to our performance
questions. With this in mind, IBM views performance engineering (or PE) as “a technical discipline which
aims to ensure that a development project results in the delivery of a system which meets a pre-specified
set of performance objectives”. In the words of one of IBM’s UK PE practitioners, we want to ensure
performance is never a “nasty surprise” encountered at the end of the project.

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 8 of 9

4 Making Performance “Reality Checks” Happen Earlier

In light of what has been discussed, performance testers face something of a dilemma. In spite of the
clear need on the part of solution architects, designers and developers for earlier performance feedback,
performance testers using traditional methods cannot necessarily oblige. It may take weeks or months to
assemble the infrastructure, populate the production size databases and create the automated load
testing scripts and procedures needed to conduct a thorough performance test; even then, such a test is
generally dependent on the completion of application development.

Performance engineering introduces techniques that enable performance “reality checks” to take place
throughout the software development lifecycle. Some examples of these techniques are listed below.
Note that many of these techniques provide opportunities for early cooperation and synergy between
development and test groups.

• Performance testing during unit test – Developers may wish to consider including some kind of
performance testing as part of their unit test activities. For example, timings could be collected
for critical transactions, database queries could be analyzed for improvement and so on. It may
be appropriate for some of the unit test to take place in the performance test environment, since
larger databases may give a better idea of how performance will be in the production
environment, and the performance test environment may contain larger databases than are
normally available to developers.

• Prototyping – Performance prototyping as a technique has already been mentioned. In many
cases there will be more than one technical alternative under consideration by software architects
and designers, with each alternative having different performance attributes. A performance
prototype can be thought of as a partially developed application, with enough logic in place to
allow assessment of one or more technical alternatives. For example, in one IBM project a
prototype was used to mimic future database access activity against each of three different data
mirroring solutions to assess their respective effects on transaction throughput.

• Modeling – Performance modeling techniques allow performance attributes of a proposed
system to be estimated or projected as a means of understanding that system’s service level
characteristics. Models may be developed using something as simple as spreadsheets, or they
may require the use of complex modeling tools. While such models are usually the responsibility
of a performance engineer or architect to develop, modeling provides an opportunity for great
synergy with the performance testing team. Performance test results can be used to calibrate
and improve the model, while modeling results may point to areas where more in-depth
performance testing may be required. In many cases, modeling can be used to amplify or extend
the results of performance testing by running modeling scenarios that cannot presently be tested
(e.g. changing hardware or capacity assumptions, increasing volumes, etc.).

• Requirements – Very often the performance aspect of system requirements does not get enough
attention. Performance requirements may not be defined at all, or they may be vague or
incomplete, making it difficult to determine whether the requirements have truly been met and
adding to the risk of failure. Both the performance engineer and the performance tester have a
vested interest in seeing that the performance requirements are fully elaborated from both a
business and technical perspective, so that they meet the so-called “S.M.A.R.T.” criteria (Specific,
Measurable, Attainable, Realistic, Testable).

From Realism to Reality: Making the Case for Performance Engineering – Final Version

Workshop on Performance and Reliability, October 2nd – 4th, 2003, New York, NY Page 9 of 9

5 Conclusion

Managing performance risk effectively means that we must be willing to give the appropriate level of
attention to performance at the most opportune times during the development cycle. This does not
diminish the importance of performance testing, which remains a critical assessment task. Rather, this
means we must begin to combine performance engineering and performance testing techniques if we are
to be successful in deploying tomorrow’s increasingly complex, critical and interdependent systems. To
that end, the following actions are advocated to bring about the “culture change” needed in our respective
organizations.

• Be an advocate for early and aggressive management of performance risk throughout the
software development lifecycle.

• Find ways to get involved earlier in the software development lifecycle than you are now.

• Become the "performance conscience" for your organization or area.

• Push for multidisciplinary performance engineering teams that have the right mix of skills to
assess and address performance risk.

