
Performance Testing, Modeling and Piloting – All at
Once!
By Dave Jewell (jewell@us.ibm.com)
Contributed for use by the Workshop on Performance and Reliability
Session: WOPR15, Campbell, CA
Date: October 27 – 30, 2010

Abstract

We are accustomed to doing performance testing of a new application or release prior to
deployment, but what happens when the application being tested is already being
deployed as a production pilot? This experience report discusses a situation where one
enterprise’s aggressive deployment schedule for a multi-store labor management
application required creative use of performance test scenarios plus performance
information coming from both pilot experience and performance modeling to rectify
potential batch window problems with its sales associate work schedule generation
process.

Business Context
A major North American clothing retailer was seeking to improve the efficiency and
cost-effectiveness of the way in which it managed the time of its sales associate labor
force across its 2,500+ stores. Sales associate wages constitute a significant portion of its
overall costs, and the retailer’s management team felt that in a challenging business
climate, centralizing the management of sales associate labor would provide financial
benefits.

The retailer’s requirements included the ability to track the hours of sales associates
clocking in and out, and the ability to automatically generate optimized work schedules
that took into account labor requirements based on projected store traffic plus various
constraints on the sales associate labor force at each store (e.g. availability, applicable
state/local labor laws), with the intent of improving store-level profitability.

Technical Context
The overall project is an example of what IBM refers to as a “package integration”
project, in that a vendor packaged software solution was being integrated with the
customer’s existing IT systems. Part of the project involved replacing store-based
instances of its legacy labor management package, while another part involved the typical
package development and tailoring activities commonly referred to as “RICEF” (Reports,
Interfaces, Conversions, Extensions, and Forms).

The package chosen was a labor management solution developed under the Workbrain
brand now owned and supported by Infor. The bulk of the application was developed on

a J2EE platform, using IBM Websphere Application Server and Oracle databases. Due
to the size and technical complexity of the project, personnel from both the customer’s
organization and multiple vendors were involved in the development, testing and
deployment of the solution.

Project Considerations
Because of the complexity of the solution and the fact that the package was being tailored
extensively for this retail company’s situation, performance testing revealed a number of
opportunities for tuning and performance improvement.

Adding urgency to the situation was the fact that due to previous delays, production pilot
deployment began months before the overall performance test effort and some stages of
development were able to finish. Because of this, the retailer mandated a performance
test strategy in which performance test data and activity volumes in the performance test
environment would precede those volumes being deployed into production by several
weeks, so that the performance test results would disclose any performance, reliability,
capacity and scalability issues before they happened in production.

 Example of Remediation and Tuning Points in a Solution Stack – Retail
Package Implementation
End Users
(sales
associates
and
managers)

Company
Portal
Layer

Web
Server
Layer

Application
Layer

Database
Layer

Company
Portal
Server

IBM HTTP
Server

Reporting
Server
(Cognos)

Application server
(WAS/J2EE) with
• Packaged retail
application modules
• Company custom
modules (extensions)

Optimization
Engine

Application server
(WAS/J2EE) with:
• Workflow Engine
• Batch Server
• Clocking Server

E-mail gateway

Package
solution DB

server (Oracle)

• Session management settings
• Compression settings for selected elements

• Adjustments to optimization parameters required to reduce
cycle time, stay within batch window

• Java memory management adjustments
• Fixes to “hung” processes
• Polling frequency adjusted for selected process restarts
• Scheduling of optimization requests staggered to avoid

overloading Optimization Engine

• Rewritten to improve
throughput

• Addition of indexes to
selected tables to
improve query
performance

• Implement standard
vendor tuning
recommendations

• Change to number and configuration of Java Virtual Machines
(JVMs) to handle workload

• Database query tuning
• Rewrites of selected packaged batch processes to improve

throughput of DB-intensive processing
• Multiple online and report apps rewritten to improve response

• Increase capacity
• Apply current OS patch

levels
• Reconfigure load

balancing

This strategy had a number of implications:
 In addition to developing performance test scripts, significant effort had to be put

into creating synthetic performance test system database data, representative of
the future deployment scenario in question (e.g. number and mix of stores
deployed, store forecast activity, store employee populations, etc.).

 If necessary, deployment could be temporarily delayed to rectify such problems,
but with the intent of resuming and catching up so that overall deployment would
complete on time before standard year-end production “freeze” went into effect.

Batch Generation of Sales Associate Work Schedules
Of particular interest from a performance test scenario perspective was the generation of
weekly sales associate work schedules. Nightly batch processing in support of schedule
generation and upstream/downstream processes proceeded according to the following
schedule (major tasks shown):

 Sunday a.m. – Historic Sales and Traffic Data, Availability Data
 Sunday p.m. – Team Data
 Monday p.m. / Tuesday a.m. – Budget Update, Forecast Generation
 Tuesday p.m. / Wednesday a.m. – Schedule Generation
 Wednesday p.m. – Schedule Regeneration
 Thursday p.m. – Schedule Publishing and E-mail Distribution
 Friday p.m. / Saturday a.m. – Payroll Data Export

The Tuesday overnight processing window for schedule generation was critical because
schedule generation needed to complete for all 2,500+ plus stores. Because schedule
generation is a complex optimization problem, the Workbrain solution employed
dedicated servers, a specialized modeling language (Mosel) and a sophisticated
optimization solution (DASH) to support schedule generation.

Interrelationship of Pilot, Test and Modeling Scenarios for
Schedule Generation
The Workbrain labor management solution partitioned the stores into zones based mostly
on geographic and brand groupings. In the initial solution, only one zone could undergo
scheduling processing at a time, although multiple stores in the same zone could undergo
scheduling processing as long as DASH optimization engines (instances) were available.
The figure below shows the results of early performance testing for three different
performance test zones using different capacity and parallelism configurations.

Scheduling
Scenario # Scheduling Scenario Description

Average # of
Concurrent DASH

processes

Average
Elapsed DASH
Time per Store

Overall
Elapsed Time Overall Elapsed Time

1
Test of Zone 96128 - 2 Batch CPUs
(5/12) 12 0:05:18 1:31:00

Had to throttle back batch maximum tasks to avoid
overrunning server capacity.

2
Test of Zone 96128 - 6 Batch CPUs
(5/13) 20 0:05:23 1:09:00

IMPROVEMENT # 1 - Increase capacity of Batch
server from 2 to 6 CPUs, 8G to 24G memory, by
utilizing TANALD03 for schedule generation.

3
Test of Zone 90036 - 6 Batch CPUs
(5/19)

TBD - (Assuming
~20) 0:10:24 1:39:00

Note higher average DASH scheduling time than for
zone 96128.

4
Test of Zone 92357 - 6 Batch CPUs
(5/19)

TBD - (Assuming
~20) 0:14:08 3:04:00

Note higher average DASH scheduling time than for
zone 96128.

5

Test of Overlapping Zones (96128 /
90036 / 92357 running concurrently) -
6 Batch CPUs (5/19) 33 0:08:47 3:52:00

IMPROVEMENT # 2 - Run up to three zones
concurrently at a time instead of strictly serializing
zones.

Using the performance test results, simple performance models were developed to make
projections on how elapsed time could be expected to grow in production as the solution
was rolled out to more stores over time, again using different capacity and parallelism
assumptions.

Elapsed Batch Schedule Generation Time

0:00:00
2:00:00
4:00:00
6:00:00
8:00:00

10:00:00
12:00:00
14:00:00
16:00:00
18:00:00
20:00:00
22:00:00
24:00:00
26:00:00
28:00:00
30:00:00
32:00:00
34:00:00
35:59:59
37:59:59

9
(2

008
-3

-1
6)

35
 (2

00
8-

5-
11)

49
 (2

00
8-

5-
18)

10
0 (

20
08

-6
-8

)

23
5 (

20
08

-6
-2

2)

39
6 (

20
08

-7
-6

)

64
0 (

20
08

-7
-1

3)

80
2 (

20
08

-7
-2

0)

10
23

 (2
00

8-
7-2

7)

12
40

 (2
00

8-
8-3

)

14
78

 (2
00

8-
8-1

0)

16
73

 (2
00

8-
8-1

7)

19
25

 (2
00

8-
8-2

4)

21
89

 (2
00

8-
9-7

)

22
85

 (2
00

8-
9-1

4)

24
05

 (2
00

8-
9-2

1)

24
94

 (2
00

8-
9-2

8)

27
12

 (2
00

8-
10-

5)

28
69

 (2
00

8-
10-

12
)

Stores rolled out (Date)

E
la

p
se

d
 t

im
e

(h
h

:m
m

:s
s)

TOTAL SCHEDULE GENERATION
TIME (assuming TANALA16 - 2 CPUs,
serial zone processing)

TOTAL SCHEDULE GENERATION
TIME (assuming TANALD03 - 6 CPUs,
serial zone processing)

TOTAL SCHEDULE GENERATION
TIME (assuming TANALD03 - 6 CPUs,
processing three zones)50 Stores

20%

50%

35:44

22:28

14:08

Eight-hour
batch window

}
6:08 - Minimum improvement
required to meet target

Schedule generation was scheduled to start at 6 pm US Pacific time, with a goal of
completing in eight hours to minimize impact to the next morning’s batch and online
processing. Since the performance model showed significant problems in being able to
do that, a number of corrective actions were taken to address the problem.

Since pilot production deployment had already started, production performance results
were taken to help validate progress. The following chart shows the number of
concurrent DASH optimization engines (0 – 80) active during the batch schedule
generation cycle, with 1,000 stores completing their processing in around four hours.
This result was measured three months after the initial batch performance testing and
projections had been made, when a subset of the performance and reliability
improvements had been deployed.

2008-08-19 NALM PROD Schedule Generation - Active Store Count over time

0

10

20

30

40

50

60

70

80

90

18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00

Time of day

o

f
st

o
re

s
in

 p
ro

ce
ss

Even with some of the reliability improvements in place, part of the challenge of
improving performance was due to the fact that shortly after the first two hours of the
test, the problem was not one of needing more DASH optimization engines and server
capacity, but the fact that the few remaining stores to be run had elapsed times longer
than what was typical for a store (e.g. 5 minutes or less). The variances in processing
times were in part due to the different sizes, labor pools and forecasts being managed,
although in a number of cases it is possible that data setup errors for certain stores caused
them to have longer elapsed schedule generation times than necessary.

Actions Taken and Outcomes
 The package vendor fixed reliability problems with the batch processes used to

manage DASH optimization that occasionally led to stalled or terminating
schedule generation tasks.

 Resource, memory, process start/restart and Java tuning measures were taken to
ensure DASH optimization could perform well for the number of concurrent
DASH optimization engines assigned.

 Custom Unix shell scripts were written which allowed new zones to be launched
in parallel to keep 60 – 80 DASH optimization engines active at any given time,
as long as there were zones that had not yet been launched.

 Continuing attention was given to data clean-up, and in some cases optimization
assumptions, pertaining to stores with unusually long running schedule generation
elapsed times.

 After negotiation with the retailer’s business stakeholders, tuning parameters
specific to the retailer’s scheduling model were change to reduce processing time.

 By the time the performance test had ended, a credible path to attaining the eight-
hour batch window had been demonstrated.

Lessons Learned
Obviously the situation where an application has begun pilot deployment prior to
completion of development and performance test is not an ideal or recommended one, but
it probably happens more than performance and reliability testers would prefer. The
experience from this project suggests that in this situation, we can use what we are
learning from both test and production at the same time, and in the case of a staged
deployment, make selected use of modeling to give our stakeholders as much of an idea
as we can about what the future holds.

In this particular case, performance testing, modeling and pilot deployment results all
played a part in contributing to the success of the project and our understanding of
schedule generation performance, since each had its own “test scenarios” of sorts.

 Performance test results allowed us to see what a live system would do in various
test data, capacity and parallelism scenarios, although in the early stages of
testing, not enough data was present to do a live test of the 100% deployment
scenario.

 Performance modeling results allowed us to make projections into the future
based on what had been learned from performance testing.

 Pilot production results allowed us to get weekly feedback (on Wednesday
mornings) on the results of live production schedule generation to guide our
ongoing testing, modeling and tuning efforts.

