
VERIFYING
SOFTWARE

ROBUSTNESS
Ross Collard

C ll d & CCollard & Company

OVERVIEWOVERVIEW
• Software is robust if it can tolerate such problems as p

unanticipated events, invalid inputs, corrupted internally
stored data, improper uses by system operators,
unavailable databases, stress overloads and so on.

• Systems that include both hardware and software are
robust if they can tolerate physical problems such as
equipment damage loss of power software crashes andequipment damage, loss of power, software crashes and
so on.

• Since these problems can and do occur in live operation,
this session examines how to evaluate a system’sthis session examines how to evaluate a system s
robustness within the relative sanctity of the test lab.

Copyright 2005 -- Collard & Co. 2

AGENDAAGENDA

Basic definitions
T ti f b tTesting for robustness
Evaluating reliability
Common complications
Risk-based testingRisk based testing

Copyright 2005 -- Collard & Co. 3

BASIC DEFINITIONSBASIC DEFINITIONS
What is Robustness?

• Robustness is the ability of a system to prevent, detect,
adapt to and recover from operational problemsadapt to and recover from operational problems.

What is Robustness Testing?

• Since these problems can and do occur in live operation,
it is important to evaluate a system’s ability to handleit is important to evaluate a system s ability to handle
them. Robustness testing tries to make a system fail, so
we can observe what happens and whether it recovers.

Copyright 2005 -- Collard & Co. 4

BASIC DEFINITIONSBASIC DEFINITIONS

• Reliability is most commonly defined asReliability is most commonly defined as
the mean time between failure (MTBF) of
a system in operation and as such it isa system in operation, and as such it is
related to availability.

• Scalability is the ability of a system to
d t i i k l daccommodate increases in work load,

number of users, database size, etc.

Copyright 2005 -- Collard & Co. 5

BASIC DEFINITIONSBASIC DEFINITIONS

• A stress test is one which deliberately
stresses a system by pushing it beyond itsstresses a system by pushing it beyond its
specified limits.

• Recoverability is the ability of a system to
return to operation after a failure.

Copyright 2005 -- Collard & Co. 6

SOME COMPLICATIONSSOME COMPLICATIONS
• Systems, especially complex ones, often behave in ways y p y p y

which their designers neither anticipated nor understand.

• Systems can fail in many different ways• Systems can fail in many different ways.

• When systems fail, the diagnostic audit trail is often
incomplete.

• Little failure data is publicly available which we can use• Little failure data is publicly available which we can use
to guide the testing efforts and fault injection.

Copyright 2005 -- Collard & Co. 7

SOME COMPLICATIONSSOME COMPLICATIONS

• Many developers and testers are unaware of
techniques developed by the robustness and q p y
dependability community.

• The testing tools themselves can fail or act
bizarrely under stress.

• We do not know what work loads to test with.

Copyright 2005 -- Collard & Co. 8

SOME COMPLICATIONSSOME COMPLICATIONS

• All components of a system affect its
dependability so evaluating end to enddependability, so evaluating end-to-end
dependability needs a multi-disciplinary
approachapproach.

• The test environment does not mimic the
live environment. Etc., etc.

Copyright 2005 -- Collard & Co. 9

TYPES OF ROBUSTNESS
TESTINGTESTING

A. Violations of Pre-Conditions
B H L dB. Heavy Loads
C. Probing for System Limits

Copyright 2005 -- Collard & Co. 10

A. Violations of Pre-ConditionsA. Violations of Pre Conditions

Negative testingNegative testing
• Invalid inputs

Boundary value testing
Li it f d diti• Limits of ranges; edge conditions

De-stabilization
• Mutation analysis and perturbations

Copyright 2005 -- Collard & Co. 11

B. Heavy LoadsB. Heavy Loads

Load testing
• Heavy and peak loads

Limit testing
• Testing at specified limits (often by contract)

Stress testing
• Overloads• Overloads

Hot spot testing
I t l f d l d

Copyright 2005 -- Collard & Co. 12

• Intense, narrowly focused loads

C. Probing for System LimitsC. Probing for System Limits

B l k id ifi iBottleneck identification
• Uses invasive probes to monitor resource use

Duration or endurance testingg
• Long-fuse, delayed action failures, e.g., memory leaks; 24- to 96-hour

durations

Accelerated life testingcce e ated e test g
Enriched failure opportunities; shortened duration

Spike and bounce testing
• Intense sudden surges of demand; simulation of volatile conditions

Breakpoint testing
• Increase load until system fails; find the breaking point

Copyright 2005 -- Collard & Co. 13

Increase load until system fails; find the breaking point

D. InteractionsD. Interactions

Rendezvous testing
• Coordinate multiple concurrent events

Synchronization testing
• Timing, sequence of events, race conditions

Feature interaction testing
• Interference testingg

Deadlock testing
D t b t ti t ti f l t h

Copyright 2005 -- Collard & Co. 14

• Database contention, contention for latches

E. Human ErrorsE. Human Errors

Bad day testing
Operator and user flubs• Operator and user flubs

Soap opera testingSoap opera testing
• Exaggerated user scenarios

Copyright 2005 -- Collard & Co. 15

F. CatastrophesF. Catastrophes

Disaster recovery testing
Identification of disaster scenarios• Identification of disaster scenarios

• Disaster recovery plan lends credence to
implausible scenariosp

– Nasdaq multi-user log-on failure

Copyright 2005 -- Collard & Co. 16

G. Physical FailuresG. Physical Failures

Environmental testing
Physical conditions temperature electricity• Physical conditions – temperature, electricity,
radiation, pollutants, vibration, G forces (gravity),
etc.

Copyright 2005 -- Collard & Co. 17

H. Handling ChangesH. Handling Changes

Live change testing
Make modifications while running live• Make modifications while running live

Invalid configurations
Change to unsupported settings
Use extreme corner cases

Copyright 2005 -- Collard & Co. 18

J. Handling ErrorsJ. Handling Errors

Error detection & recovery testingError detection & recovery testing
• Reverse engineering from error messages

Degraded mode testing
• Run with some facilities disabled

Software fault injectionSoftware fault injection
Triggers inserted to cause system failures
deliberately, in test mode

Copyright 2005 -- Collard & Co. 19

SOFTWARE FAULT INJECTIONSOFTWARE FAULT INJECTION

• Software fault injection is a specialized type of j p yp
design for testability, to provide the testers with
the capability to easily, safely trigger or simulate
system errors which otherwise might be verysystem errors which otherwise might be very
difficult to observe in the test lab but which
nevertheless may happen in the real world. y pp

• Software fault injection is different from software
fault insertion, which is a way of assessing test
effectiveness by deliberately inserting errors into
systems in an experimental mode

Copyright 2005 -- Collard & Co. 20

systems in an experimental mode.

MODES OF FAILUREMODES OF FAILURE
• One of the main objectives of a stress or robustness test j

is to see if we can make the system fail within the
relatively safe and controlled confines of the test lab, in
order to observe the conditions under which the system y
fails, how it fails (what happens), and whether it recovers
in an acceptable manner.

• Many people believe that a system can only fail in one
way or at most a small number of ways. They also
believe that in any case the different ways in which thebelieve that, in any case, the different ways in which the
system could fail are not very important to the users (and
the testers).

Copyright 2005 -- Collard & Co. 21

AUTOMATED ROBUSTNESS
TESTINGTESTING

• Automated robustness testing has the g
advantages of being more comprehensive,
cheap and fast, but it tends not to have the same
degree of creative destruction as a deviousdegree of creative destruction as a devious
human tester.

• Example: Phil Koopman of Carnegie Mellon
University (CMU) built a tool called Ballista to
test operating systems. Ballista generates test
cases, using combinations of valid and invalid
(positive and negative) inputs

Copyright 2005 -- Collard & Co. 22

(positive and negative) inputs.

RELIABILITYRELIABILITY

• The probability of executing for a period ofThe probability of executing for a period of
time without failure (MBTF).

• Measured reliability depends on the failure
d l l d d i f t tmodel, load and infrastructure.

• Not the same as availability, recoverability,
robustness (but related).

Copyright 2005 -- Collard & Co. 23

()

SOFTWARE RELIABILITY
ENGINEERING (SRE)ENGINEERING (SRE)

The intention of SRE is to answer two questions:

(1) Gi th tt f f il f d i t t ti• (1) Given the pattern of failures found in system testing,
what level of system reliability can we realistically expect
to experience in live operation?

• (2) If a goal has been set for a system’s reliability in live
operation, when can we stop testing the system andoperation, when can we stop testing the system and
removing defects, because the system has become
clean enough to meet the goal?

Copyright 2005 -- Collard & Co. 24

SOFTWARE RELIABILITY
ENGINEERINGENGINEERING

Limitations of SRE

• The SRE method requires a large number of data points (i.e.,
failures incidents) to work, like any statistics-based method.

• The method is only as good as the operational profile which is used
– it needs to match reality

• The method is only as good as the reliability estimation model.

• The reliability estimates are based on extrapolations from past
experienceexperience.

• Test coverage is likely to be low, since the distribution of the test
cases adheres to the operational profile.

Copyright 2005 -- Collard & Co. 25

p p

TEST DURATIONTEST DURATION
• How long do we need to execute the software in order to g

accumulate enough failure data? One way to answer
this is by trial and error -- keep counting until we have
accumulated enough data. Of course, this means that g
the testers cannot give any estimate of the testing
duration until after it is completed.

• According to John Adams of IBM, most software defects
result in failures only rarely. The average software
defect found after delivery in large systems has andefect found after delivery in large systems has an
MTBF (mean time between failures) of 900 years, and
35% of defects have an MTBF greater than 5,000 years.

Copyright 2005 -- Collard & Co. 26

SOFTWARE ENTROPYSOFTWARE ENTROPY
• Software entropy, also called software rot, is the py

phenomenon by which software reliability decreases
gradually over time, because of the propensity of
patches to introduce inadvertent new defects. Even if p
the software is not modified, it becomes obsolete
because the world continues to change around it, so its
reliability degrades regardless.y g g

• After a certain age (usually anywhere from 2 to 5 years
after the system was first implemented) the rate atafter the system was first implemented), the rate at
which new defects are introduced through modifications
exceeds the rate at which they are being removed.

Copyright 2005 -- Collard & Co. 27

THE SCALABILITY ISSUETHE SCALABILITY ISSUE
• Scalability is the capability of a system to y p y y

expand (or contract) as the needs change, and
to provide acceptable service as the load
increases or decreases: i e to handle large asincreases or decreases: i.e., to handle large as
well as small loads, large as well as small
databases, and large as well as small networks., g

• Scalability problems can happen with new
systems which have been expressly designed
for growth, but tend to be worse with existing
infrastructures which have evolved

Copyright 2005 -- Collard & Co. 28

infrastructures which have evolved.

CAUSES OF BOTTLENECKSCAUSES OF BOTTLENECKS

• Imbalances

• Data Capacity Limitations

• I/O and Bandwidth Capacity Limitations

• Processor Limitations

Copyright 2005 -- Collard & Co. 29

