
How and why I used Rational
Robot (VuC) to support high

volume functional testing.

Mike Kelly



Key Points

• Performance test tools sometimes work
better for functional testing then traditional
functional test tools

• Performance test tools are better designed
for high volume automation

• Performance test tools can sometimes
offer easier access to functionality in
application-under-test



Problem

• Rewrite of a legacy insurance application
– From mainframe to web-based

• Parallel testing using 300-500 new
applications/policies a week from
production data
– Written to flat file by production process every

weekend



Traditional Approach – Using GUI

• It would take somewhere around 10
minutes per policy to enter the data

• A possible total execution time of around
80 hours on one machine.

• Even if we distributed the testing across
10 machines, it would take 8 hours
(assuming no problems).

• Use all of our resources during that time.



Using Performance Scripts
• We had a more robust scripting language

– Easier access to the production data
– Allowed us to write more advanced data parsing and conversion

methods
• We were no longer tied to the GUI

– Cut execution time to around 45 seconds per policy
• We were able to leverage virtual user licenses instead of

functional licenses
– Allowed us to execute tests in batches of 100
– We did not have to use all of our resources so we could continue

working.
• Less impact of application changes (specifically GUI

changes)



Prototype

• I got a prototype working before I left the
company

• The only issue we ran into was a load
limitation in the application-under-test
(which we would not have found until
much latter in the project otherwise)



Limitations

• No GUI level testing is executed (screen-
based rules for data verification, consistent
behavior, etc…).

• One of the reasons we wanted to use
production data was not just to test the
rating system for policies, but to also test
the input constraints on the GUI.



Future Implementations
• I would consider putting in more elegant

response time logging
• I would design the data access so it could be

pointed to different data sources
• Going forward it would be nice to develop a

balance between the GUI testing and high-
volume testing.
– Use the performance test tools for the bulk of the

testing and then randomly select the data for some
GUI level testing?

– I would be open to discussions on how to work
around this problem.


