©2007 Eric Proegler, Hyland Software, Inc.

The Workshop on Performance and Reliability 9:
Pushing the Boundaries of Performance Testing Tools

Tool Boundaries Avoided:
Context for Choosing Custom Tools

Document Version 0.8.6
Last Updated: September 5th, 2007
Eric Proegler
ericp@onbase.com
Office of the CTO
Hyland Software, Inc.
28500 Clemens Road
Westlake, Ohio 44145
Ph: (440) 788-5000
Fax: (440) 788-5100
www.onbase.com

©2007 Eric Proegler, Hyland Software, Inc.

COPYRIGHT AND DISCLAIMERS
© 2007 Eric Proegler and Hyland Software, Inc.

Permission for use and publishing of this document by the Workshop on Performance and Reliability
(WOPR) is granted. All other rights reserved.

Information in this document is subject to change without notice and does not represent a commitment
on the part of Hyland Software, Inc. The software described in this document is furnished under a license
agreement or nondisclosure agreement and may be used or copied only according to the terms of this
agreement. Should you have any questions pertaining to discrepancies in this document, please contact
Hyland Software, Inc.

Depending on the modules licensed, the OnBase ® Information Management System software may
contain portions of: Imaging technology, Copyright © Snowbound Software Corporation; CD-R
technology, Copyright © Sonic Solutions; CD-R technology, Copyright © Rimage Corporation; OCR
technology © ScanSoft, Inc; Mail interface technology © Intuitive Data Solutions; Electronic signature
technology, Copyright © Silanis Technology, Inc.; Full text search technology, Copyright © Microsoft
Corporation; Full Text Indexing technology: © Verity, Inc.; SYBASE Adaptive Server Anywhere Desktop
Runtime, Copyright © SYBASE, Inc., Portions, Copyright © Rational Systems, Inc.; ISIS technology,
Copyright © Pixel Translations, a division of ActionPoint, Inc. Portions contained within are licensed by
U.S. Patent Nos. 6,094,505; 5,768,416, 5,369,508 and 5,258,855.

Hyland Software® and OnBase® are registered trademarks of Hyland Software, Inc. Application
Enabler™ is an unregistered trademark of Hyland Software, Inc. All other trademarks, service marks,
trade names and products of other companies are the property of their respective owners.

Intended Audience

Attendees of the Workshop on Performance and Reliability, or others examining performance testing from
a context-driven perspective. It is expected that the reader has experience and familiarity with using
automated testing tools to performance test software systems.

Abstract

This paper describes an experience; a context and confluence of circumstances where a custom tool was
the right choice for a performance testing project. The hope is to identify considerations in using
homegrown tools while describing a situation where they were successfully used and deployed. In looking
at why this worked, the circumstances considered necessary for success are identified, and what might
be learned.

©2007 Eric Proegler, Hyland Software, Inc.

Table of Contents

INTENDED AUDIENCE 2
ABSTRACT 2
TABLE OF CONTENTS 3
NARRATIVE 5
CONTEXT 6
COMMERCIAL LOAD TOOL LIMITATIONS 7
THE CUSTOM TOOL 10
SUCCESS FACTORS 12
APPENDIX A: REPORT FROM TESTING ENGAGEMENT 13
TABLE OF FIGURES 14
REPORT SUMMARY 16
INTERPRETING TEST RESULTS 17
MODELING WORKLOADcuoveieieteistieiiseeetssesetssse sttt st s s s s s bt s e st nses 17
RESOURCE CONSUMPTION AND PERFORMANCE CURVES.........cueueuiuimiaiaiiirieteteteieienentnteeseseeseseseiesesesesetse s sesesenens 18
CONCLUSIONS AND PREDICTIONS 20
METHODOLOGY 21
EQUATIONS ...ttt 21
TUNING 23
WEB SERVER TUNINGtttuttettietetteeeteiteetes et est et eetes et st st es s e s eseeees e et s e s es e e e esene s et eneeeesent et et eneaseseneeaeseneeeenens 23
DATABASE SERVER TUNINGcuvevuittiseetsiaetetsssets sttt sese sttt sse st s st et s st se s s st e et sssees 24
ENVIRONMENT SUMMARY 25
WEB SERVER SUMMARYc.citiuiiatetitetenteeteseetetestteseseeeeses e seseseaseseseaseseneeeesestasaseneasesentasesentesesentaseseneeseseneaseseneesesens 25
DATABASE SERVER SUMMARYouiuuimiuetniaetetsiaesssssesessssesssesessssesessssessssssessssesessssesessssessssssesssesessssssessssesssssessnses 26
CLIENT SUMMARYtuiittateteteteteses e ttseseeseseseteses s sttt e s et e s e s et eseseses et ae e e e s e s e s e b ek e b s ea sttt et e et e s e b et et eseses ettt e esesenenas 27
LOGIN PERFORMANCE 28
AANALYSTS ...ttt 34
COLD RENDERING 35
RAW DATA ..ot s sttt 35
AANALYSIS .ottt ettt etttk s b st et s e s e e e e h e st e R e £ R SR e ARt ARtk h e s a sttt s et et n et et et et e nens 41
IMAGE RENDERING 42
RAW DATA ...ttt et s sttt sttt 42
AAINALYSIS ..ottt ettt ettt ettt s b st e ke s ek et £ ek stk e £t R SR ek e et Ao Rtk E et e sttt s et s e sttt et e e nenenes 48
AFP RENDERING 49
RAW DATA ...ttt s sttt 49
AANALYSIS ..ottt ettt ettt ettt s b st e e st e ket £ e Ao Rtk e £ R Rt R Rt s A e Rtk E et h e sttt et e sttt et eenenes 55

©2007 Eric Proegler, Hyland Software, Inc.

BANDWIDTH EFFECTS

REPORT APPENDIX A: ADDITIONAL RESOURCES
REPORT APPENDIX B: REFERENCES

56
59
60

©2007 Eric Proegler, Hyland Software, Inc.

Narrative

After WOPRS, I started putting the word out internally that my group would performance test and consult
for services revenue. Our first engagement was arranged shortly afterwards. A customer asked for us to
measure the capacity of the hardware they already had in place, running our web server software. We
quoted a small job, with the intention of turning this project around at the pace we are accustomed to.

We needed to choose a tool for our testing during the quoting process, so that we could pass through
licensing costs in the quote. The important thing for us was to test effectively in the two days we had
available onsite; any tool problems that would have the effect of reducing our testing scope were
unacceptable.

Well in advance of this testing engagement, we had become disenchanted with our commercial load tool.
There is a full section of this paper detailing the challenges of the tool, but in short, the load tool is
difficult and time-consuming to code scripts with, locks us into canned reports and graphing, and is not
particularly robust or reliable itself as software. I got a quote for a short engagement, and it was several
thousand dollars for less than a month.

Based on this, we were ready to choose something else for our project. We considered other commercial
tools, and OpenSTA. We also considered a custom tool we've been working on for a while. We started
developing this custom tool to do tests that we couldn’t perform with our commercial tool, because of
licensing and reliability limitations. We have been working with it for several months, and though it was
still evolving, it had been reliable in duration testing and high load situations.

In the end, we choose to use the custom tool for the project. The tool developer would be onsite with
me, and I was confident or foolish enough to think that we could iron out any difficulties during the
engagement.

The customer let the quote sit for several weeks, then suddenly wanted us onsite the following Monday.
The engagement was scheduled for two days onsite, with two days of setup, analysis, and follow-up
budgeted. A total of eight days of services was billed for both of us, and is pretty close to actual usage.

When we arrived onsite for the first day, the LDAP integration in our web server software required
updating of the tool. The tool developer worked on the tool and scripts, and the tool and scripts were
ready by 5 o’clock, allowing us to break for dinner.

I had made it a requirement of our engagement that we would be able to test after hours as we saw fit.
We came back at 7pm, and started running tests and updating scripts. We ended up finishing by 1am
with the small set of tests we had planned, verified our data capture, and packed up. The next day, we
validated a load balancing switch, performed a hyperthreading test, helped with application-specific
issues, delivered an oral summary of results, and then went home that night.

A week later, we delivered the report found later in this paper. We did some interesting resource cost-
based analysis, and took an approach in providing capacity calculations that may be of interest, but this is
beyond the scope of WOPR 9’s theme. The customer was quite happy, so we can claim custom tool use
on this project to be a success.

Having done this successfully, it is very apparent to me that this is not something to be undertaken lightly
or casually. Without the work put in prior to the engagement on the tool, the availability of the
programmer onsite, and some luck, this would not have been successful.

©2007 Eric Proegler, Hyland Software, Inc.

Context

I work for a software development firm that develops an ECM solution nhamed OnBase, developed in
C++/C#/ASP.Net, using Windows and IIS with a variety of database and storage platforms. Revenue
nears nine figures, and development/quality assurance staff is around 150. Development is aggressive
Agile, with an impressive number of features added between semi-annual major releases, with service
packs being distributed year-round.

Approximately 6600 customers have been installed by the company’s services group, channel partners,
and OEM re-labelers. Imaging, parsing and import processing, workflow, a thick client, a web server and
web services, and exposed APIs are all components of the software of concern to us.
Database/web/application servers, storage hardware, networks, custom middleware, and widely varying
line of business uses are the context in deployment.

I lead a team of three that serves a number of purposes. We report to a senior manager with 35 years of
experience, an essential architect of the software that now serves as the CTO’s lead technical resource,
guiding us and others. For now, I call us the Performance Team, though I'm taking impressive name
suggestions.

We performance test software under development; we work with Development to isolate and fix bugs in
areas such as thread safety, in addition to identifying unnecessary resource allocation and consumption in
the software. We also provide troubleshooting and analysis in escalated support situations (frequently
leading to the previous activity), evaluate technologies and their deployments with our software, present
training to sales engineers, teach at our vendor conferences, and in the situation described here, earn
services revenue through performance testing services.

This broad portfolio requires executing quickly and simply. We must choose a reasonable scope and stick
to it. We generally first perform a small number of uncomplicated experiments with thorough
instrumentation. We then apply rapid heuristics and group analysis, report, and then test further into
areas of interest. We report written, orally, and/or through change requests. Methodology and
conclusions may be challenged, so we need to show data, but documentation is generally quite light and
often not more than email and a couple spreadsheets.

This pace is kept successfully because we have an accumulated foundation of knowledge concerning the
software, supporting technologies and test lab hardware. Mentorship is readily available, intermediate
levels of confidence in results can be expressed, mistakes are tolerated, and we are permitted to simply
state conclusions and move quickly to the next task.

We definitely make trade-offs for this agility. We load test only some of the time, reducing our
opportunity to become truly familiar with our tools. We do not have resources and time to invest in
making our toolbox as robust and repeatable as it could be. The commercial load tool experience we
have is significantly affected by this. We do not reach very high levels of justified confidence in our
results, as we generally do not have the time to aggressively challenge conclusions from more than one
or two directions. We live the 80/20 proportion, counting on getting enough right quickly enough to make
up for the overall success percentage reflected in moving at this speed.

All in all, the fast pace and diverse focus makes for a high level of challenge and freshness, and fits our
team very well. The frequent changes of priority, lack of closure, and uncertainty means that it is
probably not a good fit for everyone.

The last point of context significant for this paper is a bias in the organization against open-source
software and using it. I have not drilled to the bottom of it, but been snapped at loudly enough for asking
questions that I tread lightly when talking about OpenSTA, for example.

©2007 Eric Proegler, Hyland Software, Inc.

Commercial Load Tool Limitations

Our commercial tool was chosen by Development and QA Management several years ago as a result of
vendor familiarity. We trialed Compuware’s QALoad at a time when our web browser software was .asp
based, and used it very effectively at that time. We did not evaluate any other packages at that time, and
management made the purchasing decision. We continued to use it effectively for several months. When
our software moved to ASP.Net, the tool was not ready, and has not caught up yet.

Our context does mean that since we are not using the tool on a regular basis, we may be missing out on
certain shortcuts or ways to save future work. On the other hand, the software we test changes often
enough that we would be not getting a huge benefit from script reuse in any case, and we have certainly
looked for and asked the vendor about the most troubling items.

Experiences with the tool described here refer to version 5.2 SP5 through 5.5 SP3. We have been in
contact with our vendor, and after dropping WOPR names and so forth, we have an engaged vendor that
seems to be trying to make things right. All the same, these criticisms are not hearsay, but hard
experiences that the vendor has not challenged as we've reported and discussed them.

Our biggest challenge is the time it takes to execute even the simplest test. Coding load tests is time-
consuming, and it is a good try when we can take a load script from recording to playback in less than
half a day. This time is consumed primarily in coding scripts to accommodate capture/parameterization
manually. This may or may not be reflective of what is expected by other load testers, but in our context,
spending hours doing a repetitive task such as this is a speed-killer.

In our web server software, Global Unique identifiers (GUIDs) are used as result set handles, allowing
them to be re-referenced. These handles are passed in an http response when a result set is generated.
The commercial tool has no capability to catch this easily; we need to dig into raw responses and
configure capture parameters from there. We then need to locate the appropriate places to push the
GUID back into the URL and make those substitutions. In LoadRunner, this is a right-click operation to
parameterize the data from the tree view, and then a prompt for global replacement.

The other serious challenge in taking a load script from capture to replay is handling xml packages. Our
load tool captures some xml responses, but not any inbound xml packages. Since query parameters
(among other things) are often packaged this way, we need to configure these to simulate load against
the web server properly. The load tool does not allow for capture-replay of these, so we must build xml
payloads programmatically in string variables, and post them to the proper URL. In LoadRunner, again,
this is all simple enough.

Handling these conditions requires manually editing the .c load script file generated by the load tool.
Editing the load script file breaks the visual “tree” interface first presented by the tool. Most functions can
be handled in the tree view, which is somewhat easier to navigate and work with than the script file.

Unfortunately, switching frames, constructing xml packages, and other activities cannot be done in the
tree view, and any changes applied to the load script through the interface will trounce changes made
directly to the script file underneath. This makes the interface dangerous at best, and of limited use,
since we cannot put many activities (such as our manual captures) into context with the GUI.

Though we attempt to make the changes provided for by the interface before we go to the script file, if
we miss or forget any, we will end up forking the test script to copy and paste back to the working copy
we end up load testing with. That's all if we keep it straight and don't trounce any work we've already
done with the load script.

Our challenges with our load tool don't stop once the load script is prepared. Conducting tests has its
own set of problems. For example, attempting to capture Windows performance counters is very hit-or-

©2007 Eric Proegler, Hyland Software, Inc.

ﬁ Flayback Options

E- Y Vaniables
werthawguid

- o ContralwindowMa
- o windowlD
MHewlbjectD
objectlD
Parameterization Rules
@ D atapool Files

H Common Hitp Headers

|»

- h Accept-Encading
----- h Userdgert

u} Common Content Checks

™ Transaction Setup

-7 Transaction Loop

[Gﬁ} MavigateTo: http://qa-0031 43/ appnet

-{3¥ Rediect - 301

[+ Redirect - [Javascript)

= Page 1: OnBase B.4.0.21 [Production] Server Logon
ue? Content Check: [dizabled)

ue? PageCheck: complete litle

& AdditionalSubR equests

& SubRequests

% Sleep 1 zeconds

c§> MavigateT o: http://ga-003143/apprnet/blank. htra
-H Http Headers

- Cookies

o @ ASP.MET_Sessionld

------ P CGI Parameters

. Page 2. http:/#qa-003143/appnet/blank. htm
l_& Content Check: [dizabled)
ue? PageCheck: complete litle

3 g:
-H Http Headers
- Cookies
b ASP.MET_Sessionld
CGl Parameters
Licensedccepted
languageParam
dataSource
targetFage
framt™Config
ugerMame
pazsword
Page 3: OnBase 6.4.0.21 [Production] Server Logon
Fage 4: http:/#qa-003143/appnet/blank. htm
Page B: OnBase
Page E: htp: //qa-0031 43/ appnet/Controls/hte/Outlook Panel htc =6 4,
Page 7: http:/#qa-003143/appnet/Contralz/hte/TrafficControl htc ?v=6,4.1
Page & http://qa-0031 43/ appnet/Contrals/hte/DropD own, htc?v=8,4.04.2,ﬂ
3

l |

=R =R - - N - N -]

[
[
[
[
[
[

P — REQUEST # 4 (see action item on Page 3] ———————
s

7/ current page url is http:- ga-003143-appnetslogin. aspx

e

Set (HEXT REQUEST ONLY, HEADER, "Accept", "=sx"):
Set (HEET_REQUEST_ONLY. HEADER, "Accept-Languags'. "sn-us"):

Set (HEET_REQUEST_ONLY, CHECKPOINT_WAME, "Page 4 - blank htm"):

Hawigate To{'http:/ ga-003143-appnet-blank htm"}):

DO_SLEEF(5):

S e REQUEST # 5 (=ee action item on Page 4) ————————
P

<7 current page url is http:--ga-003143-appnet-blank htm

b

Set (HEXT_REQUEST_OWLY., HEADER, "Accept", "image<gif. image z-zbitmap. image’jpeg’
", image-pipsg. applicationsvnd.ms-sxcel. applicationsvnd. ms-powsrpoint.
"application-msword. applicationszaml =ml. application-vnd.ms—zpsdocumsnt”

". application/z-ms-xbap, applicationsz-ms-application, ®=-%");

Set (HEET_REQUEST_ONLY. HEADER, "Accept-Languags'. "sn-us"):

Set (HEXT_REQUEST_ONLY, POST_DaTA, "Licensedccepted". "null"):

Set (NEET_REQUEST_ONLY. POST_DaTh. "languageParsm’, 'en—u="):

Set (HEXT_REQUEST_ONWLY, POST_DATA. “"dataSource". EWSU2") .

Set (HEXT _REQUEST ONLY, POST_DaTh, "targetPage "NavPanel aspx").;
Set (NEXT_REQUEST_ONLY, POST_DaTA, "fronWVConfig". "False"):

Set (HEXT_REQUEST_ONLY, POST_DATA. "userName". "abrdfc”):

Set (HEXT REQUEST ONLY, POST DATA, "password', “abrdec”):

Set (HEET_REQUEST_ONLY, CHECKPOINT_WAME, "Page 5 - Logging In"):

Post_Tol"http: - ga-003143-appnet-login. asp=").
Verify(PAGE_TITLE., "OnBase"}:

Extract the substring found between the two strings specified below
P

__wertnavguid = Get(REPLY, STRING. ModifvyEncoding(UTF8. "

"CreateSessionManager() : “rn
N it

window name = ~""), HodifvEncoding(UTFS, "~"':")):
DO_SLEEF({1):
e e —— REQUEST # £ (sse action item on Page §) ——————
Y
#7 current page url is http:-~-ga-003143-appnet-login. aspx
o
Set (NEXT_REQUEST_ONLY, HEADER, "Accept'. "= x"):
Set (NEXT_REQUEST_ONLY, CGI_PARAMETER, “"v". "6.4.0.21"):
Set (HEXT_REQUEST_OWLY. CHECKPOINT NAME, "Page 6 - OutlookFansl HTC"):
Hawigate_To{"http:~ ga-003143- appnet ~Controls-htc OutlookPanel htc"):
A REQUEST # 7 (=ee action item on Page 6) ———
47 current page url is http:-<ga-003143-appnet-ControlsshtcsOutlockPansl htolv=t

P
Set (HEXT REQUEST ONLY,. HEADER, "Accept", "=/%"):

Load Tool Tree-view vs. Script

miss, and it is not rare that we simply stop capturing counters during a test, or can’t configure them for

capture in the first place.

The interface for choosing counters for capture is not easy to handle either, as a tree view is presented
with each instance grouped. So, if you wanted to choose six process-level counters, you would have to
expand a tree under each counter to find and select the instance of the process for each counter.

Because of the load tool’s closed design, we have to successfully capture performance counters inside the
tool, or they are not available for correlation in the same reports/graphs. We typically capture
performance data and do our own eyeball comparisons to response times/user loads later when this is

important.

Another problem: when conducting a load test, the load players leak memory. This ensures that we
cannot run any kind of duration test, because the load player won't stay online long enough. We've
shown this issue within a few hours of testing a single load script against a single web server.

©2007 Eric Proegler, Hyland Software, Inc.

This is still preferable to load test threads, and even the load controller crashing during a test,
invalidating large sections of time, requiring state re-initialization, test restarts, and so forth. Threads
crashing will report a message such as “Middleware Exception Error” to the controller interface, and then
that vuser simply stops working. We can't figure out what this is beyond some failure inside the load
software, as no meaningful debugging information is available.

We have found load clients to be more reliable when vusers are configured process-based instead of
thread-based. This means that a new player process is started on the load client for each virtual user,
preventing a single thread from blocking all the rest if it crashes at the wrong point. Unfortunately, this
limits us to 10 vusers at most on P4 desktops with XP and 512MB of RAM. This means that our
experience with the number of simulated users supportable versus the vendor’s claims involves
differences in multiple orders of magnitude. Even with thread-based vusers, we have never been able to
run 100 vusers on a single workstation, let alone the 875 the tool estimates we can, or the large humbers
quoted elsewhere in documentation and by vendor personnel.

This would be more of a concern if we had more than our current 100 vuser licenses. We also have a
single license for conducting load tests, and can’t run more than one test at a time. We could increase
this with an additional investment, but we have reservations. We pay a five figure annual maintenance
bill, and adding more virtual users and conductor licenses would be a significant cost, particularly for a
tool we use only occasionally.

Not only do we have questions about reliability and usefulness, the most damning flaw is that the data
collected by the load tool and the tool itself is not extensible. There is no API to allow us to build or
extend missing pieces (extraction, for example) into the tool. We cannot fix what we don't like about the
tool, address our largest time sinks, or make our own correlations and graphs.

There is no way to use the data collected by the load tool in any other program without time-consuming
manual and unsupported effort. We did figure out how to extract from the results recording format, but
there is significant mapping to be undertaken, and multi-step massaging to get the data into a format we
can work with.

All'in all, we haven't thrown the tool away yet, but that has a lot to do with available options, too. I did
get maintenance paid this year, and anticipate doing it again in 2008, but I would like to have some
better choices. With the progress of our homegrown tool, this may be possible at some future date. Or
perhaps the tool will improve, and we will like it better. And of course, if another vendor were to offer a
reasonably priced tool with the features we need, we’'d have to consider that.

©2007 Eric Proegler, Hyland Software, Inc.

The Custom Tool

After experiencing a number of the limits imposed by our commercial tool, we started thinking about
alternatives. In a software shop like ours, statements like “I could write that in a week” are often heard.
A gifted young member of my team started working on the tool some time ago, and after many months,
we have a functioning load driver.

Based on the experience with the commercial tool, we had particular requirements. We did not look for
any sort of graphing or reporting features, as we found what was available in the commercial tools
limiting, and wanted to do analysis and graphing in Excel anyways. Our requirements, pretty much in

order:

Make a load generator and response time capture program for our web client. Not a graphing
package, not a performance counter collector. Provide meaningful operator feedback in terms
of user and response time metrics.

Make it reliable. It must be leak-free, and capable of operating for months unattended. Capture
meaningful information about failures when they do happen.

Be multithreaded, allowing a high number of virtual users, and scaling as additional processor
resources become available. Be capable of simulating and maintaining thousands of user
sessions.

Make scripts modular, so that components can be assembled quickly into load scripts. The test
for success will be whether we can prepare load tests significantly faster than with our current
load tool.

Accept input files for variables.

Extensible results data that can be stored long term, backed up, and referenced easily. We
knew right away that a database was the results medium.

Our toolsmith delivered (mostly, so far) on these requirements. We've run duration tests beyond 30 days,
simulated 3000 users on our web server, and now have successfully completed a custom engagement
with it. We are pretty happy with what we can do with the load tool, but more development and
documentation is needed to make it faster for all of the team to operate.

The toolsmith describes his efforts this way:

10

Over the past few months, I have created a tool that functions with
reusable blocks of scripting to rapidly develop tests against an OnBase
Web Server. Although it is still under development towards its final
incarnation, the current tool can easily create loads both long and
short term.

Built on the .NET 2.0 platform, this tool takes advantage of innate
memory allocation and management that makes it very stable memory wise.
In addition, each virtual user is self contained within its own thread

©2007 Eric Proegler, Hyland Software, Inc.

with exception handling and restart ability, meaning that a VU will
always be able to function, no matter what the error.

The scripting language is C# with a built-in structure and Web Session
library that has been built and tested over time. This library
automatically handles cookies, posts, gets, timeouts, etc, that occur
with HTTP communications. The scripts are dynamically compiled and
integrated into the testing tool, allowing for quick and easy changes.
Future improvements will include easier editing and possibly dynamic
debugging.

After compiling a user script, which contains a unique GUID for
identification, the user may create user profiles using the script
blocks they created. This process uses an easy Tree view with dynamic
variables for parameterization. These variables can also be made into
lists of values. Check marks are used in the list in order to indicate
the loop(s) and action(s) of interest for display during the run.

Logging is accomplished via a table in a SQL2k5 database. The logging
is detailed, and includes sleep times, action updates, sub-action

updates (individual pages), errors, and more. This data can be easily
queried and aggregated using native SQL queries, or exported for
analysis through Excel or any other analysis package. The table

contains a fixed postfix that shows the date and time the study was
started. The table prefix is determined by the user during
configuration.

The main screen of the tool allows individual adjustment of the user
profiles along with metadata of the test that can be saved. The users
and entire test can be saved as an XML file that is easily human
readable and editable.

The next large extension to this platform is a distributed client piece
that will allow load clients to be placed on multiple machines in order
to create large loads that one client would not be able handle.

11

©2007 Eric Proegler, Hyland Software, Inc.

Success Factors

The first and most crucial success factor was having a skilled toolsmith that could create and adapt the
tool to our circumstances and make it work. The value proposition of a custom tool is that it can coded to
work a particular way; it follows that sufficient skill and ingenuity is needed to build and adapt the tool to
the circumstances rapidly enough to be useful. It was critical that he was onsite to make changes and
fixes, and that I was confident he would be able to do so.

Nearly as important was the time invested in developing and refining the custom tool prior to the
engagement. It existed for months before the engagement came up. There was a certain amount of
confidence in and experience with the custom tool needed to justify the risk in going on-site with it. It
may not have been finished, but it had been used enough that it was possible to believe it could and
would work for our project.

The level of frustration with our commercial tool is documented well here, but without a certain level of
dissatisfaction in the first place, we would not have invested the time in developing the custom tool, or
tried to use it on an engagement. The combination of this frustration and appropriate
moxie/foolhardiness to believe we could iron out issues on site was needed to even try this.

Expectations with the customer were managed well enough that even when the tool was still being
modified towards the end of the first day of the engagement, there was no panic or questioning of what
we were up to. We kept the confidence of the customer high even when ours might have faltered.

12

©2007 Eric Proegler, Hyland Software, Inc.

Appendix A: Report from Testing Engagement

The remainder of the contents from here is the report as delivered to the customer that paid for it.
Others collaborated on this report.

The customer name is changed for anonymity. Everything else is open season for discussion time, or
follow-up questions before, during or after WOPR. Please contact Eric Proegler with any questions or
comments.

13

©2007 Eric Proegler, Hyland Software, Inc.

Table of Figures

Figure 1 - Resource Consumption Curve EXamMPIEicuuiiiiiiii s era s a e e 18
Figure 2 - LOgin WED SEIVEI SESSION......iiiiiiieieiiias e e e e e eeeete e e e e e e e eera s e e e e e eeenrns e e e e e e e e eenennneeeeeas 28
Figure 3 - Login Load Tool REPOrted SESSIONS.iviuuiiiriiiiriireeiieeeiieeee s s s e e s rr s e s e s e e aan s 28
Figure 4 - Login Actions Attempted Per SECONG......ccuu i e e 29
Figure 5 - Login Web Server Page EXeCULION TIMEcoiiiiiiiiiiiie e ee e 30
Figure 6 - Login Load Tool Reported RESPONSE TiMEcceerrrruieiieeiieiriiias e e e eseeeernnae s e e e e e e e eeeernnnneeeeens 30
Figure 7 - Login Web Server Available MEmMOIYccuuiiiiiiiiiii e aas 31
Figure 8 - Login Worker Process Private MEMOIYiiiuiiiiiiiiiii i e s s ees e e e e e s e s eae s e e e e s 31
Figure 9 - Login Worker Process Virtual MEMOIYooovieeeeiiiiae e eseeeriiie e e e e e e e e eer e 32
Figure 10 - Login Processor ULIlIZationvieuuiiiiiiiiiic e e r s aa s 32
Figure 11 - Login Context SWILChING. ... cuuiiiii i e e e e e s 33
Figure 12 - Login ProCeSSOr QUEUEINGuuiirrruuiriernnsrsrensassssesssssssssssssssssssssssssassasssssnsssssssnssssssnnssaanes 33
Figure 13 — COLD WED SEIVEN SESSIONScceeeerruuuiaseeieeeeerrsiasseeeseeerssnasseeeseeeessnnaaeseeeeereesnnnseeeees 35
Figure 14 — COLD Reported Load TOOI SESSIONSccuuiiririieiieriiieeteeetie s seen e een e e e e e s e s eaneseaneeeanas 36
Figure 15 — COLD ACHIONS PEF SECONA......ciiiiiiieiiiaseeeeeeeeeine e e e e e eeee s e s e e e e e eeees e e e e e e eeeesnnnnaeeeeeas 36
Figure 16 — COLD Page EXECULION TIMIE ...uiierriiiiierusisienis e s resi s s s seas s s s sesa s s ssssa s s ssnnsnssssennsssssssnssasees 37
Figure 17 — COLD Action RESPONSE TiMES ...cvuiiriiiiiiieites s es s s e e s eae st s e s s s e s e s s e e s e s e e e eaanas 37
Figure 18 — COLD AVailable MEMOIYcuuiiiiiiiiii ettt e s e aa s e e s e e e e e e s e e e e aanas 38
Figure 19 — COLD Worker Process Private BYLEScooiiieiimiiiiiiiei e e 38
Figure 20 — COLD Worker Process Virtual ByLeScuuuiiiiiiiiiiiiii et 39
Figure 21 — COLD CPU ULIlIZALION .eeeeeeeeeeieeeieiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeseeeeeeeeeeeeeeeeeeeeeeeeeees 40
Figure 22 — COLD CPU Context SWItChING......ceeruueei e eeer e e e e e e e e 40
Figure 23 — COLD ProCeSSOr QUEUEINGuuiveerusiiriernusasrenusssresssssssesnsssssnssssssssssssssssssnsssssssnsssssesnsssenes 41
Figure 24 — Image Test WEeD Server SESSIONSviiuiiiiiiiiiiii e e e 42
Figure 25 — Image Test Load TOOl SESSIONS......cuuiiiuieiiieiiiie s e et e ee s s e e e e era s e s e s e e e eaanas 43
Figure 26 — Image Test Load Tool Reported Actions per SECONdccuvuiiiriiiieiriiiiiee e 43
Figure 27 — Image Test Web Page EXeCUtion TiMe.....ciiuiiiiiiiii e ee e 44
Figure 28 — Image Test Load Tool Action RESPONSE TIMEuuiiiuiiiiiiiiiie e e eaas 44
Figure 29 — Image Test Web Server Available MemOrycc.uueiiiiiiiiiii e 45
Figure 30 — Image Test Worker Process Private BYLESccuuuuiiiiiiiiiiiiiiie et 46
Figure 31 — Image Testing Worker Process Virtual BYtESccuiiiiuiiiiiiiiiiii e 46
Figure 32 — Image Test CPU ULIHZatioNcoeeiiii e e e e 46
Figure 33 — Image Test Context SWItChINGcccvuueeii e 47

14

©2007 Eric Proegler, Hyland Software, Inc.

Figure 34 — Image Test Processor QUEUEING. ... cuuiiriirieriierirerisetas s ssessesssessen s e sessssn s e senesenssnnns 48
Figure 35 — AFP WED SEIVEEF SESSIONSeiieieeeeiniaeaeeaeeeeesnas s e e eeeeensnna e s e e eeeeeeesnnnnn e e e aeeeeessnnnnneeeeens 49
Figure 36 — AFP Load Tool Recorded SeSSion COUNEcceurruinieieiieiriiiaes e eeeeeeriee e e e e e e eernn e 50
Figure 37 — AFP Requested Actions per SECONAciiuuiiiiiiiiii e e 50
Figure 38 — AFP Page EXECULION TIME ..cuuuuiiiiiiiiiiiiiri e e s e s s s s saa s aaa e ee 51
Figure 39 — AFP Load Tool Recorded RESPONSE TIMEcccevvruiiiiieiieiiiiiiee e eeeeeres e e e e e e 51
Figure 40 — AFP AVailable MEMOIY ...c.uuiiiiiiiiiii i e a e e e e s e e e aan s 52
Figure 41 — AFP Worker Process Private MEMOIYu.ciiuuiiiiiiiieii et s s s ees e e s e s s e s e s e e e e s 52
Figure 42 — AFP Worker Process Virtual MEmMOIYcoouiieeeueian e e e e e e e e 53
Figure 43 — AFP Processor ULIlIZationcicuuiiiei i sn e ras e e s s s e e e e aa s 54
Figure 44 — AFP Processor Context SWILChINGviiuiiiiiiicic e e aa s 54
Figure 45 — AFP ProcesSOr QUEUEING ...cuuuuiiresusiiiirusisressssssesssssssssssssssssssssssssasssssssssssssssssssssssnnssaanes 55
Figure 46 - Response Time Sweep Of COLD DOCUMENTS....c..uuuuiiiiiiiieiiiiias e e eeeeeeriiee e e e eeeeeenn e 56
Figure 47 - Response Time Sweep of Image DOCUMENTS.ivvuiiiiiiiiiins e e 57
Figure 48 - Response Time Sweep of AFP DOCUMENTES ...vuuiiiuiiiiiiiiiee s ee e e eae s e e e e e 58

15

©2007 Eric Proegler, Hyland Software, Inc.

Report Summary

The OnBase Web Server is being deployed as part of the OnDemand/Content Manager replacement
project at Central Insurance Mutual Insurance Company (CIC). Hyland Software’s Performance Team was
contracted to measure the capacity of the current web server installation. Testing was performed on-site
July 30" and 31%,

This testing was designed to measure the capacity of a web server in terms of logging users on, and
viewing COLD, AFP, and Image documents. Before the testing was conducted, the environment was
tuned. This is described in more detail in the Environment and Tuning section of this report. Testing is
described in the Methodology section.

Testing was performed against a single web server, and two load balanced web servers. In both cases,
requests were directed to a URL serviced by an F5 content switch, http://onbaseweb. The test cases used
were defined by CIC for acceptance testing. Other work has been done by CIC with these test cases to
measure typical response times.

Response times and resource consumption were monitored and analyzed. A full discussion of results and
analysis can be found in the Conclusions and Predictions section of this report. It is important to note that
these results are an approximation depending on an extremely large number of factors. A change in
hardware or software, however slight, might change the capacity of the system significantly.

The most significant conclusions are as follows:

Each CIC Web Server can support slightly more than eight units of work per second before increased
response times due to resource consumption become unacceptable. At over ten units of work per second,
the web server begins to issue errors due to resource exhaustion. These units are defined as 1 for
retrieving and rendering an image, 1.14 for the activities for a COLD(text) document, 1.01 units for
logging on to and logging off of the system, and 2.96 units for retrieving and rendering AFP documents.

Capacity for a web server is approximately 493 units per minute, or 29,752 per hour. A session that
contains two views of AFP documents would have a cost of approximately seven units, one for the login
and three per AFP view. This means that a single web server can accommodate nearly 4,400 of these
sessions per hour. If the model session being considered viewed two image documents, the cost per
session would be about three units, and the capacity would be approximately 9,900 sessions per hour.

The limiting factor in performing more activities on this web server is CPU availability. Higher
performance would best be achieved with additional processor cores, allowing the web server to better
manage CPU context switching under a load of many users.

Testing with load balancing in place showed with two web servers, twice the work could be performed
with similar response times. Examining performance of the database server suggests that a third web
server could be added to an otherwise unloaded database server with the same scalability characteristics.
Adding a fourth web server would likely approach a threshold of requiring the database server to be
scaled vertically. The consideration of additional work against the database server from the ARMS
application, processing, and other work suggests that with a workload that would reach capacity
requiring three web servers, this threshold would be reached earlier.

Further information on placing the results of this testing in context can be found in the Context:
Interpreting Test Results section of this report.

Also found in this report is an analysis of the effects of WAN link speed on response time for these test
cases. This can be found under Bandwidth Effects.

16

©2007 Eric Proegler, Hyland Software, Inc.

Interpreting Test Results

Due to the combination of scheduling challenges, limited reporting from the current solution, and
customer preference, this engagement was unusual in that no input for predicted workload was
considered. At the customer’s request, measurement of capacity in a generic sense was taken from
exercising test cases chosen by CIC.

The results obtained are approximations based on testing specific hardware and software. As
technologies and software change, these results could change considerably. These results reflect a
particular experiment, designed to simulate certain activities. They do not account for usage of the entire
OnBase solution, workload spikes, or other variables. These measurements are specifically of how many
of a given activity can be performed on the current physical hardware with the current software.

These measurements focused on CPU availability at the web server, as this is typically the limiting
resource for web servers generally and the OnBase Web Server specifically. This also was the case at
CIC.

The included spreadsheet contains equations for examining server capacity based on activity thresholds.
By plugging variables in, a predicted web server capacity in terms of CPU can be derived. Depending on
the nature of activities against the web server and system as a whole, other bottlenecks may arise.

For example, the retrievals used in this example are selective. If wild cards were used for keywords, the
size of the result set might cause larger response times, in addition to creating work that would not scale
on the same basis.

Modeling Workload

Load Testing is equivalent to a DDOS (Distributed Denial of Service) attack. It is not difficult to break a
web server by flooding it with more requests than it can handle. Applying the correct load is the biggest
variable in the experiment.

Any load testing needs usage data to put it in context, conduct meaningful tests, and derive how many
servers are needed, even if it is known how much usage a single server can support. If replacing an
existing application, there should be logs from which to get usage data from, and project future growth in
usage from. Business stakeholders may also have data about the level of activity they plan on supporting,
and it may be more appropriate (and easier) to size to that.

Some basic questions to get started:

e How many sessions per day? Average? Peak?

e How many sessions per hour? Average? Peak?

e What activities will users of the system perform?

e How many instances of each activity are performed per session?
e How frequently are these activities performed?

e How long does a typical user spend executing activities?

e What is the business context of these activities?

17

©2007 Eric Proegler, Hyland Software, Inc.

e Are there any rushes to account for? Monday morning, Friday afternoon, end of
month/quarter/year?

For example, consider a requirement of supporting 250 users. Many load testers would start here, record
themselves quickly clicking through a well-practiced transaction to login, retrieve a document, view it,
and logout. They might then simulate 250 virtual users executing one session per minute.

Looking more at the business process or production usage, it might be learned that less than 100 users
are logged on at any one time, but are logged on for extended periods of time. Watching a user bring up
a document and work with it in a separate line of business application, may reveal that there is a
document retrieval every 15 minutes, with two documents viewed in that time.

The first scenario explores resource limitations to help with capacity planning, generating 15,000
sessions, retrievals, document views, and logouts an hour, or more than 4 per second of each. By
applying this type of load, the system could be examined to see how it degrades under abuse. Anything
this test reports about response times or reliability is dangerously misleading.

A scenario modeled on the production usage is a much better choice to verify an application’s response
times. To simulate production usage, transaction rates should be realistic. A scenario based on the data
above might generate 100 sessions, 400 retrievals, 800 document views, and 100 logouts an hour. This
test is a much better predictor of user experience and application reliability.

There are reasons to do each type of test, but it is crucial to know which type is being performed and
why. The difference in load against the web server between these two tests is more than 40 times
(4000%) the number of activities. Response times, resource availability, and reliability may suffer from
the limitations imposed by a scenario that does an unrealistic amount of work, or one that isn't sized to
the available hardware.

Resource Consumption and Performance Curves

When examining test results, the goal is to identify “the knee of the curve”, or the point at which
response times or resource consumption stops growing in a linear or logarithmic fashion, and begins to
grow exponentially. Here is an example:

QUEUE LENGTH ¥S. UTILIZATION

20.000 +
18.000
16.000 +
14.000
12.000 +
10.000 +
g.000 +
£.000 +
4.000 +
2.000 +
0.000 t t T i T T t t t t t t t t t t t {
% 0% 15% 20% 25% 30% 35% 4086 45% S0% 55% 60% B5% TO% 75% S0% 85% W% 5%

UTILIZATIOHN

QUEUE LENGT!

Figure 1 - Resource Consumption Curve Example

The increasing queue length will cause response times to be slower. In this case, queue length is a
function of utilization. At approximately 70% utilization, the queue length begins to grow at an increased
rate, and this rate of growth only increases as utilization climbs. At 80% and 85%, the curve can be seen

18

©2007 Eric Proegler, Hyland Software, Inc.

to increase even more dramatically. Perhaps at 75% utilization, the response times may have been
acceptable, but they quickly become less so.

Every installed software system has a capacity limit, and a suitable operating range. Exceeding a system's
capacity causes the software to stop functioning correctly. Exceeding the operating range is easiest to
see by observing the increase in response times. Exceeding either capacity or operating range means just
that; overloading resources will cause errors to occur, but it is important to assign proper causality to
these.

It is a function of good software design to have capacity limited by available resources, rather than the
software itself. Eventually, a piece of software will not run faster even with additional hardware
resources. Hyland Software’s Performance Team has simulated loads into the thousands of users, and
found that as additional CPU capacity is provided, the web server continues to grow in capacity until
other resource limits are encountered.

In the CIC testing, this was also the case. Here, additional CPU cores would increase capacity more than
higher CPU speeds. Recommended practice is to scale web servers horizontally to deal with increased
load, not to build more powerful web servers. There is also a redundancy/high availability value added
from this type of deployment.

19

©2007 Eric Proegler, Hyland Software, Inc.

Conclusions and Predictions

These measurements describe a particular experiment, with a particular workload, in a particular
environment. As components of the system change (software, hardware, network, etc.), or additional
load is applied to the system and/or solution as a whole, results may change significantly. Though
numbers of some precision are used for purposes of calculation, they are approximations based on
specific test cases derived in a specific environment.

After examining the capabilities and capacity of the systems involved, it is believed that each of the in
place web servers can handle a load of hundreds of active users or thousands of occasional users. After
examining the costs of the common activities under test (logging on, retrieving and viewing images,
retrieving and viewing COLD data, and retrieving and viewing AFP documents), an overall capacity was
determined.

The following equation describes the capacity of each web server.

29,752

1030+ Lidc+ Lit 206 Lotalusers

l = number of logins in one hour
¢ = number of cold documents retrieved in one hour
i = number of images retrieved in one hour
a = number of AFP document retrieved in one hour

For example, if it is expected that the average user will login twice, and retrieve and view 2 documents of
each type per hour, you would plug in the numbers:

29,752

103(2) + 114(2) + 1(2) + 2.96(2) _ [otatusers

29,752
2.06 +2.28+2+5.92

= total users

29,752
12.26

An Excel 2007 file that will permit plugging in these variables to rapidly predict capacity is included with
this report.

= 2427 sessions/hour

A round of testing with a second web server in place was performed. All activities showed a doubling of
capacity without response time growth, indicating that the database and database server were scaling
appropriately. Database server CPU did not exceed 20%, and other counters indicated acceptable
performance with additional capacity available at this level.

Without the other OnBase activity in place for background, it is difficult to make a prediction regarding
the need to scale the database server upward if additional web servers were deployed. The database
server appears capable of comfortable serving the load currently in place.

20

©2007 Eric Proegler, Hyland Software, Inc.

Methodolog_y

Load testing for the purpose of sizing a server or application works best in a controlled environment.

This minimizes the number of variables and variation in the environment, making for an easier analysis of
data. This level of isolation was provided during test runs by performing them off-hours, with other
OnBase activities suspended during the test.

The most common way to establish a load against a server-based architecture is a multi-threaded and/or
multi-computer simulation of user activity. This employs software that can send simultaneous requests to
the server that mimic the communications seen from a live user.

There are many commercial and open source tools available to accomplish this task. Custom tools are
also a choice, as they were used here. A partial list of commercial load tools:

e Borland® SilkPerformer® - http://www.borland.com/us/products/silk/silkperformer/index.html
e Compuware® Qaload® - http://www.compuware.com/products/qacenter/qaload.htm

e Mercury® LoadRunner® - http://www.mercury.com/us/products/performance-
center/loadrunner/

Open-source alternatives include

e OpenSTA - http://www.opensta.org/
e “The Grinder” - http://grinder.sourceforge.net/

During the course of performance testing at Hyland Software, a need was identified for a custom tool to
exercise the OnBase Web Server. Though still under development, the tool successfully creates realistic
load comparable to a live user and collects statistics related to its actions. It has successfully run long-
term load tests with durations over one month, and simulated loads of thousands of users.

This tool was used on-site to provide load and collect data on server responses. Statistics were collected
from other sources (database activity, performance monitoring) to confirm that proper load was being
applied and to provide scientific validity.

A collection of Active Directory accounts was provided, and the load client tool used 250 separate
accounts for diversified user context under load. Load was applied and increased gradually. By observing
the resulting effects on resource utilization and remaining capacity, critical thresholds of activities were
identified in terms of requests per second. In this context, requests is a user logic measurement,
corresponding to a system activity, such as logging on, or viewing an image, COLD, or AFP document.

Equations
In testing particular functions, the following critical values of requests per second were found:

e login—8.06=.124sec/req
e (COLD-7.25reqg/sec=.138sec/ req
e Images—8.25=.121sec/ req

e AFP-2.79=.358sec/ req

21

©2007 Eric Proegler, Hyland Software, Inc.

The base assumption for this analysis is that a server is a finite resource that can be quantified. Using
the above critical values, an equation for the calculation of maximum user load given a user profile can
be derived.

First, the values must be normalized into units of work. Taking the smallest value of .121 sec / req, the
rest of the values can be converted:

e Login- 1.03 units
e COLD-1.14 units
e Images—1 unit
e AFP—2.96 units

To calculate the amount of units per hour a server can support, simple unit calculation is used

<. 121 seconds » 1 hr)_1 — 29752 units
unit 3600 sec/ 7’ hour

Using this result, an equation for the number of users supported by a web server can be derived. First,
adding up the units used by one user per hour:
1.03l+114c+1i+1.77a=u
Where
l = number of logins in one hour

¢ = number of cold documents retrieved in one hour

i = number of images retrieved in one hour

a = number of AFP document retrieved in one hour

u = total units used by user

This can now be plugged in an solved for an equation expressing the total number of users supported by
a server, given the number of logins along with the nhumber and type of documents retrieved in one hour
by one user.

29,752

= total
1030 + L14c + 1i + 2.96q _ Lotatusers

22

©2007 Eric Proegler, Hyland Software, Inc.

Tuning

Web Server Tuning

Microsoft .NET is installed, by default, with client connection settings. This mean that a .NET application
is limited in the amount of resources it is able to access. The OnBase Web Server relies on the .NET
framework, and as such is limited by any settings applied to it.

While at CIC, the Performance Team tuned several settings on the Web Server in order to fully utilize all
the resources available to it. Any other web servers added to the solution should also be tuned in a
similar manner.

The following options are found in the machine.config file, located at
WINDOWS ROOT\Microsoft.NET\Framework\vl.1.4322\Config and are values that are
recommended by Microsoft (Microsoft, 2004).

Max Connections — Maximum number of concurrent connections allowed to the server
Default: 2

Recommended: 12 * # of CPUs

Set To: 24

The maxconnection setting controls the maximum number of outgoing HTTP connections that a machine
can accommodate. In the case of distributed web applications, this refers to the ASP.NET connection
between the server and its clients. By increasing the number of connections, we increase the number of
concurrent requests the server can handle.

MaxIOThreads — Maximum number of threads dedicated to IO operations
Default: 20

Recommended: 100

Set To: 100

The maxIoThreads setting controls the maximum number of I/O threads within the .NET thread pool, and
are also considered to be “completion” threads. The number placed in its value is automatically
multiplied by the number of processors within the machine.

MaxWorkerThreads — Maximum number of threads available for other tasks
Default: 20

Recommended: 100

Set To: 100

The maxWorkerThreads setting controls the maximum number of worker threads in the thread pool. Like
the maxIoThreads setting, the number placed in this setting is automatically multiplied by the number of
processors on the machine.

MinFreeThreads — Minimum number of threads available, even during idle time.
Default: 8

Recommended: 88 * # of CPUs

Set To: 176

The minFreeThreads setting is used as a low water mark indicating that the worker process is to queue

all incoming requests when the number of available threads in the thread pool falls below
minFreeThreads’ value.

23

©2007 Eric Proegler, Hyland Software, Inc.

MinLocalRequestFreeThreads — Similar to above, but for local machine requests
Default: 4

Recommended: 76 * # of CPUs

Set To: 152

The minLocalRequestFreeThreads setting is used as a low water mark indicating that the worker process
is to queue requests from localhost when the number of available threads in the thread pool falls below
minLocalRequestFreeThreads (when a web application makes a request to a local web service.)

Database Server Tuning

A number of steps were taken by Eric Proegler of Hyland Software to improve performance of the
database server prior to the execution of tests. These are documented here, and were each shown to
Chris Peer of CIC (SQL DBA).

Physical memory in the database server was increased to 8GB. SQL Server was configured to use 7.1GB
of this RAM. This preserves physical memory for the operating system, and helps avoid excessive paging
and overcommitted memory.

SQL Server’'s TempDB was previously configured with a single file sized to 1GB, with no autogrowth
permitted. TempDB was changed to use four 4GB files on the TempDB volume, providing more space for
sort operations and reducing logical contention. Autogrowth was not enabled.

Maintenance Plans that performed index statistics updates had been failing for several months. Though
the job record showed that the maintenance plans completed successfully, this was erroneous. The
maintenance plans failed when they ran out of space in the TempDB file. The sampling percentage was
set to 10%, but Hyland recommends 100% sampling. After increasing the size and number of files in
TempDB, and the sampling percentage, a full update of statistics was performed.

CPU affinity for SQL Server was set to use the first four virtual processors on the database server.

Because the CPUs are hyperthreaded, the four CPUs present appear as eight to Windows. All eight CPUs
were assigned to SQL Server.

24

©2007 Eric Proegler, Hyland Software, Inc.

Environment Summary

Data for the environment was collected with AIDA32 (Miklos, 2006) and summarized here.

Web Server Summary

Computer
Operating System Microsoft Windows Server 2003, Standard Edition
OS Service Pack Service Pack 2
Computer Name SWEB200 (OnBase Web)
User Name jmwtemp
Logon Domain CICDOM1
Date / Time 2007-07-30 / 08:05
Motherboard
CPU Type Dual Xeon, 3600 MHz (4.5 x 800) (HT)
Motherboard Name Dell Computer Corporation PowerEdge 1850
System Memory 3072 MB
BIOS Type Phoenix (10/03/06)
CPU Properties
CPU Type Dual Intel® Xeon™ 3600 MHz (4.5 x 800) (HT)
Original Clock 3600 MHz
L1 Trace Cache 12K Instructions
L1 Data Cache 16 KB
L2 Cache 2 MB (On-Die, ATC, Full-Speed)
Storage
Disk Drive PERC LD 0 PERCRAID SCSI Disk Device
Floppy Drive Floppy disk drive
Optical Drive TEAC CD-224E (24x CD-ROM)
[Drive #1 (33.9 GB)]
Partition Partition Type | Drive Start Offset Partition Length
#1 Dell Utility 0 MB 31 MB
#2 (Active) NTFS C: 31 MB 12291 MB
#3 NTFS D: (Data) 12323 MB 12009 MB
#4 NTFS E: (Logs) 24332 MB 10338 MB
Network
Network Adapter TEAM : Team #0
Interface Type Ethernet
Hardware Address 00-11-43-DD-29-4F
Connection Name Local Area Connection 3
Connection Speed 1000 Mbps
MTU 1500 bytes
IP / Subnet Mask 10.210.2.57 / 255.255.0.0
Gateway 10.210.1.250
DNS 10.210.1.100

25

©2007 Eric Proegler, Hyland Software, Inc.

DNS

| 10.210.1.130

Database Server Summary

Computer

Operating System

Microsoft Windows Server 2003, Enterprise Edition

OS Service Pack

Service Pack 2

Computer Name SCIC068

User Name jmwtemp

Logon Domain CICDOM1

Date / Time 2007-07-30 / 09:22

Motherboard

CPU Type Quad Xeon, 3333 MHz (5 x 667) (HT)

Motherboard Name

Dell Computer Corporation PowerEdge 6850

System Memory

8187 MB

BIOS Type

Phoenix (07/13/07)

CPU Properties

CPU Type

Quad Intel® Xeon™ MP, 3333 MHz (5 x 667) (HT)

Original Clock

3333 MHz

L1 Trace Cache

12K Instructions

L1 Data Cache

16 KB

L2 Cache 1 MB (On-Die, ATC, Full-Speed)

Storage
Drive System | Serial Total Size Free(MB) | % Free
C: (SCIC068_C_Local_SystemFiles) NTFS F010-7CDF | 34643 MB 19368 56 %
D: (SCIC068_D_Local_TRAN_LOGS) | NTFS B6DF-68EB | 34671 MB 34442 99 %
E: (S068_E_SAN_TEMPDB) NTFS B229-4C65 | 51222 MB 46380 91 %
F: (S068_F _SAN_DATABASES) NTFS E232-5543 | 153637 MB 92046 60 %
Z:

Network

Network Adapter BASP Virtual Adapter

Interface Type Ethernet

Hardware Address

00-14-22-08-9D-91

Connection Name Team 1
Connection Speed 1000 Mbps
MTU 1500 bytes

IP / Subnet Mask

10.210.1.68 / 255.255.0.0

Gateway 10.210.1.250
WINS 10.210.1.100
WINS 10.210.1.130
DNS 10.210.1.100
DNS 10.210.1.130

26

Client Summary
Computer

©2007 Eric Proegler, Hyland Software, Inc.

Operating System

Microsoft Windows XP Professional

OS Service Pack

Service Pack 2

Computer Name

DSTAVAY (Dell Desktop Image 2)

User Name jmwtemp

Logon Domain CICDOM1

Date / Time 2007-07-30 / 09:46

Motherboard

CPU Type Dual Unknown, 2800 MHz (3.5 x 800)

Motherboard Name

Dell Inc. OptiPlex GX620

System Memory

1014 MB

BIOS Type

Phoenix (03/31/06)

CPU Properties

CPU Type

Intel® Pentium® D CPU 2.80 GHz

Original Clock

2800 MHz

L1 Trace Cache

12K Instructions

L1 Data Cache

16 KB

L2 Cache 1 MB (On-Die, ATC, Full-Speed)
Storage

Disk Drive HDS728080PLA380

Floppy Drive Floppy disk drive

Optical Drive HL-DT-ST CDRW/DVD GCC4482

[Drive #1 (74.5 GB)]

Partition

Partition Type | Drive

Start Offset

Partition Length

#1 (Active) NTFS C: (DSTAVA7 C) | 0MB 76285 MB
Network
Network Adapter Broadcom NetXtreme Gigabit Ethernet

Interface Type

Ethernet

Hardware Address

00-13-72-AD-8C-9A

Connection Name

Local Area Connection

Connection Speed 1000 Mbps
MTU 1500 bytes
IP / Subnet Mask 10.204.2.76 / 255.255.0.0
Gateway 10.204.1.250
DHCP 10.210.1.100
WINS 10.210.1.100
WINS 10.210.1.130
WINS 10.211.1.201
DNS 10.210.1.100
DNS 10.210.1.130
DNS 10.211.1.201

27

©2007 Eric Proegler, Hyland Software, Inc.

Login Performance

Comparing the active sessions on the web server (Figure 2), and the reported virtual user count from the
load tool (Figure 3), it can be seen that the number of sessions are the same. There is a slight offset,
but this can be explained by the time to login and report the active session to Perfmon.

Webserver Active Sessions

350

300 +

250 +

200 +

150 +

100 +

50 +

0
20:45:36 20:52:48 21:00:00 21:07:12 21:14:24

Time

Figure 2 - Login Web Server Session

Load Tool Sessions

350

300 +

250 +

200 +

150 +

100 +

50 +

0
20:47:02 20:49:55 20:52:48 20:55:41 20:58:34 21:01:26 21:04:19

Time

Figure 3 - Login Load Tool Reported Sessions

28

©2007 Eric Proegler, Hyland Software, Inc.

In Figure 4 below, the number of actions per second cease to grow around 20:56:00, even though the
number of users (and load) continues to grow. This indicates a resource limitation.

Actions per Second

14

20:47:02 20:49:55 20:52:48 20:55:41 20:58:34 21:01:26 21:04:19

Time

Figure 4 - Login Actions Attempted per Second

29

©2007 Eric Proegler, Hyland Software, Inc.

Viewing both Figure 5 and Figure 6, there is not much variation of interest. Although both do tend to
gradually increase, there is no remarkable ‘break’ as can be seen in some other scenarios. Action
Response Time does tend to show an upward turn around 20:55:41, but it is difficult to discern due to
the wide variation of data.

Page Execution Time

1800

1600 +

1400 +

1200 +

1000 +

800 +

milliseconds

600 +

400 +

200 +

0 -
20:45:36 20:52:48 21:00:00 21:07:12 21:14:24

Time

Figure 5 - Login Web Server Page Execution Time

Action Response Time

Seconds
w

20:47:02 20:49:55 20:52:48 20:55:41 20:58:34 21:01:26 21:04:19

Time

Figure 6 - Login Load Tool Reported Response Time

30

©2007 Eric Proegler, Hyland Software, Inc.

The memory data in Figure 7, Figure 8, and Figure 9 show a steady variation that is attributable to the

load level shown in Figure 2.

Available MB

2350
[)

2300 +

2250 + ©
[]

2150 +

2100 + \

2050 +
s L] [)
2000 + ot R
1950
20:45:36 20:52:48 21:00:00 21:07:12 21:14:24
Time

Figure 7 - Login Web Server Available Memory

W3WP Private MB

350

300 + & ° °

250 + /
200 + .‘ﬂ"'

150 + "
)
100 +
o
°
50 +
0 '
20:45:36 20:52:48 21:00:00 21:07:12 21:14:24

Time

Figure 8 - Login Worker Process Private Memory

31

©2007 Eric Proegler, Hyland Software, Inc.

W3WP Virtual MB

1200

1000 + /-M‘.‘.m

°
800 + °

600 | o /

400 +

200 +

0
20:45:36 20:52:48 21:00:00 21:07:12 21:14:24

Time

Figure 9 - Login Worker Process Virtual Memory

The CPU utilization shown in Figure 10 does not show any remarkable breaks or turns. The leveling
around 21:04:00 is attributable to the leveling of load.

CPU %

100

7 0q® .oo'ooo.u

«°® LX)
80 T oo 0e® o 'Y ‘..:~ o’

4 e °° °
70 + ° ..
60 +)
°

50 + :' e

40 + & R

30 + o

20 + °

10 + &
0 _.f . . : : °

20:45:36 20:52:48 21:00:00 21:07:12 21:14:24

Time

Figure 10 - Login Processor Utilization

32

©2007 Eric Proegler, Hyland Software, Inc.

Both context switching in Figure 11 and queueing in Figure 12 show a marked upturn in thread handling
around the test time of 20:55:00, which is in line with the leveling of action rate before.

Context Switching / sec

45000

o

o’ ° a%e
40000 + ° °o °
e o g 00

o o °
35000 + ® ® 9 %o 4 °
30000 +
25000 + °
20000 +
15000 + ® °

10000 + %%

5000 + °
o
0 - + t t +

20:45:36 20:52:48 21:00:00 21:07:12 21:14:24

Time

Figure 11 - Login Context Switching

Processor Queueing

35

30 +

25 +

20 +

15 +

10 +

0 +

20:45:36 20:52:48 21:00:00 21:07:12 21:14:24

Time

Figure 12 - Login Processor Queueing

33

©2007 Eric Proegler, Hyland Software, Inc.

Analysis

Given the correlation between the leveling of action rate, and the increase in context switching and
processor queueing, both at the test time of 20:55:00, the resource of limitation in logins in this
environment is the number of CPU cores.

Taking an average of the request rate at the breakage point, it is determined that the rate at which logins
saturate the server is 8.06 actions per second.

34

©2007 Eric Proegler, Hyland Software, Inc.

COLD Rendering

Raw Data

Comparing the active sessions on the web server (Figure 13), and the reported virtual user count from
the load tool (Figure 14), it can be seen that the number of sessions are the same. There is a slight
offset, but this can be explained by the time to login and report the active session to Perfmon.

Webserver Active Sessions

300

250 +

200 +

150 +

100 +

50 +

0

9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10

Time

Figure 13 — COLD Web Server Sessions

35

©2007 Eric Proegler, Hyland Software, Inc.

Load Tool Sessions

300

250 +

200 +

150 +

100 +

50 +

0
9:10:05 AM 9:12:58 AM 9:15:50 AM 9:18:43 AM 9:21:36 AM

Time

Figure 14 — COLD Reported Load Tool Sessions

The basis for the sizing measurement is the Actions per Second achieved. This can be seen in Figure 15
for the COLD Retrieval. In the next few figures, the limiting point of the server can be observed.

Actions per Second

12

f °
°1 ° oi o:
8 ;.E:...!‘ f‘ ‘. 20 ’ ° %
6 :':..“, :. .0 °
Gt LI

9:10:05 9:12:58 9:15:50 9:18:43 9:21:36

Time

Figure 15 — COLD Actions per Second

36

©2007 Eric Proegler, Hyland Software, Inc.

In the following graphs, both Figure 16 and Figure 17, a breaking point is easily seen. At 09:20:00, both
Execution Time and the Response time reported from the load tool. This indicates that a constraint was
reached on the web server, and that maximum load that the server can handle was reached at this point.

1800

Page Execution Time

1600 +

1400 +

1200 +

1000 +

800 -+

milliseconds

600 +

400 +

200 +

-
y

0

9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10

Time

Figure 16 — COLD Page Execution Time

Action Response Time

18

16 +

14 +

12 +

10 +

seconds

9:12:58 9:15:50 9:18:43 9:21:36

Time

Figure 17 — COLD Action Response Times

37

©2007 Eric Proegler, Hyland Software, Inc.

The memory during the COLD test followed the number of virtual users in a linear trend. Both Figure 18,
Figure 19, and Figure 20 show this relationship.

Available MB

[]
)
2000 | W
y =-27961x + 1E+09
R?=0.700
1500 +
1000 +
500 +
0

9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10

Time

Figure 18 — COLD Available Memory

W3WP Private MB

400

350 + oo
300 +
250 + 00®
200 + oo

150 + °

100 +

50 +

0 e

9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10

Time

Figure 19 — COLD Worker Process Private Bytes

38

©2007 Eric Proegler, Hyland Software, Inc.

.
W3WP Virtual MB
1200
°
°®
1000 —+ 00°?®
e0®
e°®
800 e00®’ ¢
00°° °°
°
600 -+ o°°
°
400 +
200 +
°
0 .
9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10
Time

Figure 20 — COLD Worker Process Virtual Bytes

39

©2007 Eric Proegler, Hyland Software, Inc.

CPU utilization shows the source of the limitation on the web server. Figure 21 shows that the full
processing power is never used. Looking at Figure 22 and Figure 23, the source of the limitation is seen
to be the switching and queueing between threads.

CPU %

100

y = 1E+16x6 - 3E+21x5 + 3E+26x4 - 2E+31x3 + 5E+35x2 -
0T 8E+39x + 5E+43
80 + R2=0.946

70 +
60
50 4
40 +
30 |
20 +

10 +

0
9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10

Time

Figure 21 — COLD CPU Utilization

Context Switching / sec

16000

y = 2E+13x* - 3E+18x3 + 2E+23x2 - 5E+27x + 5E+31

14000 - R2 = 0.944 ® 0°%°, og¢

12000 +

10000 +

8000 +

6000 +

4000 +

2000 +

0

9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10

Time

Figure 22 — COLD CPU Context Switching

40

©2007 Eric Proegler, Hyland Software, Inc.

Processor Queueing

20

18 +

16 +

14 +

12 +

10 +

S N ANV,

9:10:05 9:11:31 9:12:58 9:14:24 9:15:50 9:17:17 9:18:43 9:20:10

Time

Figure 23 — COLD Processor Queueing

Analysis

Given the high response time and page execution, coupled with high context switching and processor
queueing, the break can be located at a test time of 9:20:00. At this point, the statistic of interest is the
average request rate, which is calculated to be 7.25 requests per second. This value will be used in final
analysis.

41

©2007 Eric Proegler, Hyland Software, Inc.

Image Rendering

Raw Data

In the image tests, the load tool database logging stopped logging halfway through the test, but other
logging continued. As seen below, the session number can be inferred from the web server and load tool
session graphs in Figure 24 and Figure 25.

42

350

Sessions

0

Web Server Sessions

300 +

250 +

200 +

150 +

100 +

50 +

13:04:48 13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

Figure 24 — Image Test Web Server Sessions

©2007 Eric Proegler, Hyland Software, Inc.

Load Tool Sessions

200

180 +

160 +

140 +

120 +

100 +

80 +

60 +

40 +

20 +

0

13:04:48 13:06:14 13:07:41 13:09:07 13:10:34 13:12:00

Time

Figure 25 — Image Test Load Tool Sessions

The actions per second in Figure 26, although incomplete, shows a steady growth in the actions per
second, allowing for a predictive measurement for further computation.

Actions per Second

20

18 +

16 +

14 +

12 +

10 +

13:04:48 13:06:14 13:07:41 13:09:07 13:10:34 13:12:00

Time

Figure 26 — Image Test Load Tool Reported Actions per Second

43

©2007 Eric Proegler, Hyland Software, Inc.

Combining the focus on both Figure 27 and Figure 28, the spike at 13:07:41 of execution time can be
ignored, due to no effect on the actual response time client side. However, there are spikes on both
graphs around 13:11:00.

Page Execution Time

500

450 +

400 +

350 +

300 +

250 +

200 +

Milliseconds

150 +

100 +

’ J\IJ
0 +

13:04:48 13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

Figure 27 — Image Test Web Page Execution Time

Action Response Time
9
8 °
°
7
6
g 5 3
8
3 4
3 o °
2 + ° ': 8 : ‘.:
° 28220, #°
| Bt X SR g
0
13:04:48 13:06:14 13:07:41 13:09:07 13:10:34 13:12:00
Time

Figure 28 — Image Test Load Tool Action Response Time

44

The memory during the COLD test followed the number of virtual users in a linear trend. Figure 29,

©2007 Eric Proegler, Hyland Software, Inc.

Figure 30, and Figure 31 show this relationship.

2350

Available MB

2300 +

2250 +

2200 +

2150 +

2100 +

2050 +

2000 +

1950 +

1900

000000000
0g00000

13:04:48

13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

Figure 29 — Image Test Web Server Available Memory

450

W3WP Private MB

400 +

350 +

300 +

250 +

200 +

150 +

100 + e

50 +

0 (]

......m..m...

13:04:48

' ' : L '
y 1 T T y

13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

45

©2007 Eric Proegler, Hyland Software, Inc.

Figure 30 — Image Test Worker Process Private Bytes

1200

0

W3WP Virtual MB

1000 +

800 -+

600 +

400 -

200 +

13:04:48 13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

Figure 31 — Image Testing Worker Process Virtual Bytes

Again, Figure 32 shows that not all of the CPU available was used at full load.

46

100

90

0

CPU %

80 +

70 +

60 +

50 +

40 +

30 +

20 +

10 +

y =-2E+14x% + 6E+19x° - 5E+24x* + 3E+29x3 - 8E+33x2 +
1E+38x - 9E+41
R2=0.943

13:04:48 13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

Figure 32 — Image Test CPU Utilization

©2007 Eric Proegler, Hyland Software, Inc.

Context Switching and Processor Queueing in Figure 33 and Figure 34 show that the limitation reached
on the web server was that of switching between processing threads. The recommended value for
processor queue is less than 2 * # CPUs. As the web server is a hyper threaded dual processor box, the
maximum value is 8.

Here, it is difficult to tell exactly when the server ‘breaks’. With the other performance counters though,
it can be seen that there is a break around 13:11:00.

Context Switching / Sec

16000

14000 +

12000 +

10000 +

8000 +

6000 +

4000 +

2000 + = 3E+12x* - S5E+17x3 + 3E+22x2% - 8E+26x + 8E+30
R?=0.970

0 L 2

13:04:48 13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

Figure 33 — Image Test Context Switching

47

©2007 Eric Proegler, Hyland Software, Inc.

Processor Queueing

20
|
18 +

16 +

14 +

12 +

10 +

2 4+

0
13:04:48 13:07:41 13:10:34 13:13:26 13:16:19 13:19:12 13:22:05

Time

Figure 34 — Image Test Processor Queueing

Analysis

In both page execution time and response time, there is a spike around test time 13:11:00. In the
processor queueing, even though there are moderate spikes earlier, the first major spike occurs at this
point as well.

Taking an average, the value of interest is found to be 8.25 requests per second.

48

©2007 Eric Proegler, Hyland Software, Inc.

AFP Rendering

Raw Data

The web server and load tool session counts are shown to be matching in Figure 35 and Figure 36.

Web Server Sessions

300

250 +

200 +

150 +

Sessions Active

100 +

50 +

0

23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 35 — AFP Web Server Sessions

49

©2007 Eric Proegler, Hyland Software, Inc.

Load Tool User Count

300

250 +

200 +

150 +

Users

100 +

50 +

0
23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 36 — AFP Load Tool Recorded Session Count

Both requested actions per second and page execution time (Figure 37 and Figure 38) show a break
around test time 23:23:00. The Action Response Time (Figure 39) also shows an increase in time around
the same time.

Reqested Actions per Sec

14

]
[]
12 + i
10 + ! .
:
[3
8 ’ %
] o
@]
hi.
6
§ .
L I
. 3 oo
4
[’ ‘j
o doe
+ [] []
2 % ~0.
]
M ®e
0 } oo
23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 37 — AFP Requested Actions per Second

50

©2007 Eric Proegler, Hyland Software, Inc.

Page Execution Time

1400
1200 +
1000 +
800 +
w
£
600 +
400 +
200 +
0 -
23:02:24 23:09:36 23:16:48 23:24:00 23:31:12
Figure 38 — AFP Page Execution Time
Action Response Time
30
25 + i
[]
o ®
(]
0 1 ° . 8
£ o3 °
Ll o o
T 8% °3
g o8, ¥
2 8: %
[~ ;o.. s
10 + 80
o’ :‘: %
L]
g
5 442
0 4
23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 39 — AFP Load Tool Recorded Response Time

51

©2007 Eric Proegler, Hyland Software, Inc.

All three memory profiles (Figure 40, Figure 41 and Figure 42) show memory usage consistent with the
user load.

Available MB

2300

2200 +

2100 +

2000 +

1900 +

1800 +

1700 +

1600 +

y = -2E+08x3 + 2E+13x2 - 9F+17x + 1E+22 *
R? = 0.865

1500

23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 40 — AFP Available Memory

W3WP Private Bytes

1200

1000 + °
800 +
600 | °°,

400 + o o °

200 + ‘/

0

23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 41 — AFP Worker Process Private Memory

52

©2007 Eric Proegler, Hyland Software, Inc.

W3WP Virtual Bytes

2100
1900 + °
1700 + °
1500 + °
1300 + [
1100 +) °

900 -+ o™

200 4 /

.*'
500

23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 42 — AFP Worker Process Virtual Memory

53

©2007 Eric Proegler, Hyland Software, Inc.

Both Context Switching (Figure 44) and Processor Queueing (Figure 45) both show dramatic increases
around the test time of 23:23:00. The CPU utilization (Figure 43) also goes over the recommended
sustained value of 70% at this time.

CPU %

y = -9E+13x® + 2E+19x° - 2E+24x* + 1E+2.9x3¢.o 0o
90 + 3E+33x2 + 5E+37x - 3E+41
R?=0.957

100

80 +

70 +

60 +

50 +

40 +

30 +

20 +

10 +

0
23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 43 — AFP Processor Utilization

Context Switching
90000
y = 3E+12x* - 4E+17x3 + 3E+22x? - 7TE+26x + 7E+30
80000 R2 = 0834 e °
)

70000 -+
60000 -+
50000 -+
40000 -+
30000 -+
20000 -+
10000 +

0

23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 44 — AFP Processor Context Switching

54

©2007 Eric Proegler, Hyland Software, Inc.

Processor Queueing
20
18
16
14
12

10

8
6
4
2
0 JJ\A

23:02:24 23:09:36 23:16:48 23:24:00 23:31:12

Figure 45 — AFP Processor Queueing

Analysis

All of the performance counters point towards the resource limitation of the server occurring during test
time 23:23:00. At this point, Context Switching and Processor Queueing both go over recommended
values.

Taking an average, the requests per second at the critical point is 2.79.

55

©2007 Eric Proegler, Hyland Software, Inc.

Bandwidth Effects

When analyzing the bandwidth effects on certain actions, a singleton (single user) trace of network
activity was taken in order to analyze the effects of both network speed and network latency. The
following analysis is for the single user action of viewing certain document types (Text, Image and AFP).

In the figures below, there is a full sweep of network speeds from 56 kbps to 2056 kbps, where the
effects of bandwidth are negligible. In addition, there are several series from Oms of latency to 100ms.

For COLD (text) documents, there is a base time of 4 seconds in retrieving the document. The large
jump in the graph occurs around 256 kbps, where bandwidth becomes the major issue in transferring the
data to the client.

Response Time Predictor Sweep: COLD Document

I

10.00 SR - b b b

-5 ¥ ' 1 1 '
g S A - S et b e s et e B e :
@ S v T r " '
o
E
=
o
w
[
2
-3
) L T | i e T T T T PP |
o
T T T OO . S e e e e
B B R R A e e R o B R e e e R S e D e S i S S s I S S)
B e e e S e e e e e L B R L ks
56 556 1056 1556 2056
Bandwidth (Kbps})
= Mo Latency {OmSec,0%:) 1 ms {1mSec,0%:) S ms {Sm3ec,0%) == 10 ms {10mSec,0%)
2T s (25mSec, 0%) [115 (S0MSEC, 0%) w5 5 (75mSec, 0%) w100 ms {100mSec,0%)

Figure 46 - Response Time Sweep of COLD Documents

56

©2007 Eric Proegler, Hyland Software, Inc.

A similar response at 256 kbps can be seen in the graph for image documents. In Figure 47, the
minimum time can again be seen at 4 seconds, but with larger increases for latency over the previous
text documents.

Response Time Predictor Sweep: Image Document

- i v
i H
@ D
w .
- H
o H
E ;
[H
o H
w H
- .
2 ¢
o H
w H
o .
o H
N N — e . e S
56 556 1056 1556 2056
Bandwidth (Kbps}
=== [o Latency (OmSec, 0%:) 1 ms (1m5ec,0%) 5 ms (Sm3ec, 0% == 10 ms {10m3ec,0%)
— 25 s [25mSec, 0% = 50 ms (S0mSec,0%:) 75 s [7SmSec, 0% = 100 ms {100mSec,0%:)

Figure 47 - Response Time Sweep of Image Documents

57

©2007 Eric Proegler, Hyland Software, Inc.

Again, for AFP documents, there is a sharp response at 256 kbps in the response time, shown in Figure
48. The minimum for this action is about 7.5 seconds, again with sharp increases for each level of
latency past 10ms added to the network.

Response Time Predictor Sweep: AFP Document

P 00}
o i
o !
w i
- H
o H
E :
= ;
W 1
I3]
c 1
e H
-3 '
w !
o i
o 5
S . S SO e e
S6 556 1056 1556 2056
Bandwidth (Kbps}
s o Lakency (OmSec, 0%) 1 s (1mSec,0%:) S ms (SmSec,0%) == 10 ms {10mSec, 0%)
7 M5 (25mSec, 0%) 0 s (S0MSeC, 0%:) w75 s (7SmSec, 0%) w100 ms {100m3ec,0%:)

Figure 48 - Response Time Sweep of AFP Documents

58

©2007 Eric Proegler, Hyland Software, Inc.

Report Appendix A: Additional Resources

If additional assistance is required, Hyland’s Performance Team can help. We performance test OnBase,
assist with support, appear at performance testing workshops, and teach performance testing at
TechQuest events. If you have a specific question, please ask your representative to forward it to the
Performance Team for help.

We are also available for engagements to assist your testing, help you choose tools, or conduct
performance studies onsite. Please contact your representative for more information.

Search engines, Performance Monitor, Task Manager, w3 and Event logs, the OnBase Diagnostics
Console, and various other tools that can help you are generally already installed or available. You can
learn much from these.

Windows Sysinternals is a collection of utilities to examine and troubleshoot low-level Windows activities.
RegMon, Filemon, and Process Explorer are all utilities in this bundle:
http://www.microsoft.com/technet/sysinternals/default.mspx

Carefully observing the http conversations between the client and server is essential to constructing good
load scripts. Consider using an http proxy such as Fiddler http://www.fiddlertool.com/ to learn what these
conversations look like.

A short overview of Performance Testing:
http://perftestplus.com/resources/requirements with compuware.pdf. Scott Barber has written a lot
more about performance testing: http://www.perftestplus.com/pubs.htm.

Microsoft’s Patterns and Practices Site has information on performance testing:
http://www.codeplex.com/PerfTesting. The performance testing guide is still in early Beta as of June
2007, but is as good a summary as available.

There is design guidance on the main Patterns and Practices site: http://msdn2.microsoft.com/en-
us/practices/default.aspx

Rico Mariani blogs on performance from the architecture/coding side:
http://blogs.msdn.com/ricom/default.aspx

Lessons Learned in Software Testing (Amazon) is an invaluable resource for any tester. The application of
context-driven testing principles can improve the effectiveness of any testing effort.

Center for Software Testing Education & Research. An online course is software testing is now available
from two testing thinkers we greatly respect, Cem Kaner and James Bach.

59

©2007 Eric Proegler, Hyland Software, Inc.

Report Appendix B: References

Microsoft. (2004, June 8). Improving .NET Application Performance and Scalability. Retrieved August 6,
2007, from Microsoft: http://www.microsoft.com/downloads/details.aspx?Familyld=8A2E454D-F30E-
4E72-B531-75384A0F1C47&displaylang=en

Miklos, T. (2006, November 20). AIDA 32. Retrieved August 6, 2007, from Sofotex:
http://www.sofotex.com/AIDA32-download_L9326.html

60

