
WOPR9 –Experience Report

Richard Leeke

The Assignment
I am currently testing a large J2EE application for an NZ government agency. The solution is

a heavily customised package, being delivered in a series of incremental releases. It supports

around 1,200 concurrent users as well as significant transaction volumes from interfaced

internal legacy systems as well as external systems.

Technologies involved in the solution include Websphere Application Server (30 instances

across 15 Solaris hosts), an Oracle database, JMS over MQ, a Stellent document management

system, Windows server based document production and PDF conversion systems and

interfaces to 3 large Sybase-based legacy systems. In all there are over 30 hosts, including 3

Sun Enterprise servers making up the solution. This infrastructure is duplicated exactly in

the performance testing environment, along with 3 Windows servers for load generation.

The Challenges
In the course of the testing we have run into numerous limits or limitations of the testing tools

we are using (the old generation Rational performance tester). Some of these are particular

limitations of that tool, others seem to be more generic, and would present similar challenges

with all of the tools I'm familiar with.

Tool limitations we have encountered include:

• Inability to handle required data correlation for the highly dynamic HTML

• Inability to handle data-dependent conditional navigation in the application

• Exceeding the limit for the size of log files and number of timing points – for long

runs attempting to access the results leads to “out of memory” errors

• Extreme difficulty in exercising realistic navigation paths (this almost caused us to

miss a critical issue which would have caused daily system outages)

• No inherent support for session abandonment, session churn or multiple sessions per

user – all critical to achieve realistic emulation with this application

• Extreme difficulty in handling application or scripting errors without “losing” virtual

users from the test run – again significantly distorting the realism of long tests – as

load drops off

• Running out of agent memory on long tests due to memory leaks in the tool (the

largest leak subsequently proved to be a fault in our solution for the previous issue!)

• HTML constructs not supported by the Rational correlation mechanism

• Inability to reapply test script customisations to re-recorded scripts for each

application release

• The tool's reporting was too slow and too inflexible to support diagnosis and test

prioritisation during a very aggressive test execution cycle

• The tool's reporting does not support reporting against the (perfectly valid and very

sensible) way the performance requirements are expressed

Richard Leeke WOPR9 Experience Report 2

The Sausage Machine
The amount of customisation of recorded scripts required for them to play back, the extent of

application change with each release and the frequency of releases meant that re-recording

scripts and manually re-applying all required customisations for each release was simply not

viable.

The solution we have come up with, affectionately known as "The Sausage Machine", is a

testing framework built from a combination of:

• Standard Rational VU scripting components

• Perl scripts to automate the majority of the required script changes

• Excel macros to generate test pacing from the workload model spreadsheet

• Perl scripts to replace the tool's data analysis

• Excel macros to help with timely presentation of test results

• (Under development) a custom graphical tool to assist with problem diagnosis

In short: string and chewing gum - but it does the job.

This experience report focuses largely on the approaches used for addressing generic issues

likely to be common to many tools, rather than Rational-specific quirks. In particular, it

discusses the techniques used for coping with dynamic HTML, the approach to regeneration

of scripts quickly after application change and the approach to reporting.

Outline of the Scripting Process
The process for generating and running a working test script consists of the following steps:

1. Define the navigation path to be used and take screen shots for documentation.

2. Name the transaction with a short mnemonic.

3. Record (an initial attempt at) a set of scripts for the transaction, following a pre-defined

script.

4. Run the first phase of the Sausage Machine over the set of scripts, to insert tags at each

point of user interaction, which identify each business transaction and transaction step.

These tags drive the pacing and timing of the script, as well as providing markers for

some of the other automated edits. Tags are inserted whenever the script includes a

“think delay” of more than a specified threshold – by default this is 5 seconds.

5. Review the tagged scripts to ensure that all of the tags correspond with the comments

entered during recording. If not, either fix up the tags manually or re-record.

6. Enter the details of the transaction and steps into a master spreadsheet which defines the

workload model and drives several aspects of Sausage Machine processing. These

details include translation of the tags into meaningful names, delay times to allow after

each step, the performance criteria that apply to this step and various other classifying

details to assist with reporting.

7. Review the scripts for changes required which can not be generated entirely

automatically with the Sausage Machine. In some cases this means inserting additional

Richard Leeke WOPR9 Experience Report 3

tags to tell the Sausage Machine what to do, in other cases separate entries in

configuration files are required.

8. Run the second pass of the Sausage Machine to make all required changes. There are

three main phases:

� optimisation of data correlation runtime efficiency

� specific changes to make the scripts play back and to drive reporting

� insertion of code to control script pacing and record response time details.

The Sausage Machine logs details of what it does, and archives a date-time stamped copy

of the before and after versions of each script, to assist with subsequent iterations.

9. Test the script.

10. Repeat steps 3 to 9 until it actually works. In some cases this requires adding extra

features to the Sausage Machine.

11. Run the scripts as part of an overall suite, with the workload controlled by one of the files

generated from the workload spreadsheet.

12. Export the raw Rational result data and analyse using Perl scripts and Excel macros.

Some Statistics
The overall test suite consists of:

• 18 transaction types, with 1 or more scripts per transaction

• 302 pages (many of which are repeated between transactions, however script re-use is

not viable)

• 330,000 lines of test script (including recorded page data)

• 50,000 lines in 20,000 different sections are edited by the Sausage Machine across

the scripts for the 18 transactions

• 285 automatically inserted tags

• 180 manually inserted tags

• 630 lines of configuration files

• A total of 810 manually edited lines to generate 50,000 lines of changes

• Roughly 30% of manually edited lines – around 250 lines - were new or modified for

the latest application release (plus several new sausage machine features were added)

• Overall the re-scripting process took two to three person weeks (excluding

enhancements to the test data set-up process)

The specific techniques used for applying edits to test scripts are naturally specific to

Rational - but the same approach could be applied just as well to any tool which exposes a

scripting language. The reporting approach is completely generic and can be applied to

results from any tool.

One of the key benefits of the approach is that it makes it straightforward to make generic

modifications to the way the scripts work after completing initial script development. For

example, at various times we have added in custom features to allow profiling of the SQL

generated, to profile the rate of business object creation (by type of object) in the application

server, to analyse overall heap usage, and the rate of creation of transient and long-lived

objects, all broken out by transaction step.

Richard Leeke WOPR9 Experience Report 4

Coping with Dynamic HTML
What’s the problem?

There are lots of cases with dynamically generated pages which the Rational tool does not

cope with. The (old generation) Rational tool generates scripts based on the pages seen at

recording time and only tries to cope with certain classes of change (URL string parameters,

form field values, cookies, etc) at run time. Some of the newer tools, including the new

Rational one, which interpret the DOM at runtime may cope rather better with some of the

classes of problems. However, we failed even to get a single page to play back with the new

Rational tool – so never got to put that claim to the test.

Some examples of the types of issues we had to cope with follow. Many of these would be

problematic for other tools, too.

• Sets of form fields (“widgets”) may or may not occur, depending on data values.

(We refer to these as “optional widgets”.) Where possible the problem was avoided

by selecting homogeneous test data (“vanilla cases”), but the extent of the variance

was simply too great to avoid all examples. Attempting to POST back values for

fields which were not present could cause application failure.

• The names for sets of form fields (widgets) change at run time depending on data

values, or the presence or absence of earlier fields. (We call these “mutating

widgets”.) Rational assumes that names don’t change, so the POSTs name invalid

fields.

• Some form field names change at run time simply due to iteration – visit the same

page twice with the same data and some field names are different.

• Form field types vary in a data dependent way (e.g. a set of hidden fields at record

time becomes a set of buttons at playback time – resulting in POSTing several

buttons at the same time – which caused nasty and obscure errors).

• The name of a field requiring correlation is found from the value of another field

(and that field just happens to have a mutating name to keep us on our toes).

• Dynamically generated Javascript for launching additional windows contains

embedded URL parameters.

• Javascript dynamically adds a new button to the DOM (so the button is not seen by

the script recorder) and then submits the button.

• Etc, etc, etc.

In many cases these issues are either entirely generic, or at least apply to all HTML pages in

this particular application. In these cases the approach we have adopted is simply to post-

process the scripts to fix-up the issues.

In other cases the required fix-ups require intelligent intervention. We handle these cases in a

variety of ways, whilst sticking rigidly to one guiding principle: we don’t make direct

changes to the test script code, we find some means of encoding the change in such a way as

to minimise the effort involved in re-applying the equivalent change to new scripts following

re-recording for new release of the application.

Had this approach been fully defined from the outset, we would probably have a single

configuration file per script defining the required changes. As it is, the approach grew in a

Richard Leeke WOPR9 Experience Report 5

piecemeal fashion, which has left us with an ugly hodgepodge of separate configuration files

and specially formatted tags which are manually inserted into the raw scripts as markers for

actions required of the sausage machine.

Regenerating Scripts with each new Release
The project lifecycle sees two or three major releases a year. We are engaged to repeat

performance testing for each release deemed to present a significant risk. Given our recent

experiences, it seems likely that we will be engaged for all major releases – and probably also

be retained to provide additional diagnostic and tuning assistance for interim development

releases.

While each major release is undergoing customer acceptance testing there are weekly minor

releases into the functional test environments. Often these minor releases would completely

trash some or all of our test scripts – so there is a constant tension between the time required

to keep the test environment up to date and be testing the latest version and the time required

actually to run and analyse tests and diagnose issues. We generally end up compromising on

one or two full re-records of all scripts per major release, by freezing (or at least chilling) the

performance test environment once the release is reasonably stable, and then only taking

selective patches where they are believed to have a performance impact.

This is far from ideal. The customer would like always to be testing the latest release – and

certainly to test the release that is finally destined for production, but the project timeline is

too aggressive and the scripting complexity too great for that to be viable. We think we are

achieving miracles by having the test suite going in two or three weeks after a new release –

the customer would like two or three days.

Richard Leeke WOPR9 Experience Report 6

Results Analysis
This project has presented several reporting challenges:

• An aggressive test execution cycle demands rapid analysis of results

• The tool cannot handle the volume of results from extended duration runs

• Performance requirements (really goals) are expressed in a way that is not

measurable with “out of the box” reporting

The test execution phase prior to each production release is typically planned to last around 4

weeks – but for the most recent release this was extended (and deployment delayed) by an

additional six weeks while performance issues were addressed and additional hardware

purchased. On each release tested to date we have encountered numerous “no go” issues.

The pressure to diagnose and resolve these issues quickly is of course intense, especially

when project delays block other dependent programmes in the organisation. The overall

“burn” rate of delays to a project of this size is huge.

During the execution phase, activity is intense. We typically work on a daily cycle of two or

three two hour tests (or more, shorter exploratory/diagnostic tests) by day, with a longer test

(perhaps eight hours) overnight, usually supplemented with additional tests at the weekend.

We have a daily half hour “scrum” style meeting at 9:15 each morning with key management

and technical staff from all teams involved in the solution, to review the results of the

previous day’s testing, perform initial triage of issues and agree priorities and a day plan.

These sessions are attended by a mixture of technical and management staff, and are

particularly keenly followed when there are roadblock issues. We counted seven technical

staff plus seven project managers at one morning scrum recently.

Test results are explored in detail – and with the technical leads for all aspects of the solution

present this proves to be an effective forum for issue diagnosis – or at least identifying

worthwhile avenues to explore. However, for this to be an effective use of the time of so

many key project staff, it is essential that the results are presented in a way that allows rapid

drill-down in numerous dimensions.

To have the results from an overnight run in a state to allow analysis by 9:15 the next

morning is a significant challenge – especially on a performance tester’s sleep budget.

Extended duration runs may have millions of timing points (several times larger than the

largest Rational’s in-built reporting can cope with). Even with the largest result sets Rational

can manage it might take 10 or fifteen minutes to produce a single view of the data – and

there is no fast slice-and dice style reporting. (Or it might take that long to produce an “out

of memory” error.)

Over the years we have found various tricks for getting around these limitations whilst

sticking with Rational’s reporting – but invariably these result in either an even more

cumbersome reporting process, or severe dilution of the data, or usually both. One work

around we used at one stage on this project also had the effect of causing us to miss a critical

issue for a while. This one is worthy of explanation, so is described briefly as an appendix.

However, our productivity and effectiveness during the test execution phase was simply not

high enough to meet the client’s needs by using the Rational tool’s in-built reporting, so (like

most performance testers I know) we now do almost all our analysis and reporting outside the

tool.

Richard Leeke WOPR9 Experience Report 7

Examples of Results Presentation
A few samples of the ways that we present results data follow. All of these views are

available within a few clicks from the spreadsheets generated automatically at the end of each

run and are used regularly during the daily review meetings.

“Traffic Light” View
This view shows a simple “pass/fail” against non functional requirements for every timing

point, at each stage of the run. The example shows a sample from the 100% load stage of a

test run (1145 active users).

range timer txn count tph response_95 response_98 response_99

12) 1145 Users _CDoc_a_Icon __CDoc 569 2276 0.3 0.5 0.56

12) 1145 Users _CDoc_b_Search __CDoc 572 2288 0.88 1.14 1.39

12) 1145 Users _CDoc_c_List __CDoc 574 2296 3.02 3.69 3.83

12) 1145 Users _CDoc_d_Docs __CDoc 575 2300 3.84 4.81 6.13

12) 1145 Users _CDoc_e_AddDoc __CDoc 576 2304 0.69 0.91 1.55

12) 1145 Users _CDoc_f_ExpandDocType __CDoc 577 2308 0.28 0.39 0.58

12) 1145 Users _CDoc_g_ExpandCode __CDoc 579 2316 0.23 0.36 0.53

12) 1145 Users _CDoc_h_SelectClass __CDoc 581 2324 8.16 11.91 13.5

12) 1145 Users _CDoc_i_FilterDocType __CDoc 580 2320 0.17 0.31 0.45

12) 1145 Users _CDoc_j_DocTypeSrchOK __CDoc 578 2312 2.08 2.88 3.33

12) 1145 Users _CDoc_k_RemoveTo __CDoc 577 2308 0.31 0.53 0.66

12) 1145 Users _CDoc_l_AddTo __CDoc 576 2304 0.47 0.63 0.72

12) 1145 Users _CDoc_m_AddCC __CDoc 577 2308 0.5 0.64 0.88

12) 1145 Users _CDoc_n_AddDocContinue __CDoc 581 2324 14.55 17.45 20.63

12) 1145 Users _CDoc_o_SaveDoc __CDoc 581 2324 0.13 0.19 0.27

12) 1145 Users _CDoc_p_DocPropsOK __CDoc 582 2328 33.16 51.91 58.8

12) 1145 Users _CaseDetails_Message N/A 1239 4956 15.08 19.22 19.73

12) 1145 Users _DeptClaims_a_Icon __DeptClaims 183 732 14.53 16.66 17.83

12) 1145 Users _DeptClaims_b_Tab __DeptClaims 183 732 10.73 16 18.83

12) 1145 Users _DeptWork_a_Icon __DeptWork 389 1556 4.88 7.23 10.23

12) 1145 Users _DeptWork_b_DeptWork __DeptWork 389 1556 1.27 1.88 2.16

12) 1145 Users _ERN_a_NextTask __ERegNonWk 240 960 8.52 9.83 10

12) 1145 Users _ERN_b_Select __ERegNonWk 240 960 0.38 0.56 0.64

12) 1145 Users _ERN_c_DoTask __ERegNonWk 239 956 8.66 9.56 10.27

12) 1145 Users _ERN_d_ACC45 __ERegNonWk 239 956 0.61 0.73 0.86

12) 1145 Users _ERN_e_Name __ERegNonWk 240 960 0.77 1.14 1.41

12) 1145 Users _ERN_e_Name.0-20 __ERegNonWk 240 960 0.77 1.14 1.41

12) 1145 Users _ERN_e_Name.1-10 __ERegNonWk 240 960 0.77 1.14 1.41

12) 1145 Users _ERN_f_Create __ERegNonWk 239 956 3.08 3.58 3.73

12) 1145 Users _ERN_g_RegOK __ERegNonWk 236 944 55.34 72.7 79.44

12) 1145 Users _ERN_h_CoverStatus __ERegNonWk 235 940 0.3 0.5 0.59

12) 1145 Users _ERN_i_Branch __ERegNonWk 235 940 0.22 0.36 0.39

12) 1145 Users _ERN_j_Finish __ERegNonWk 236 944 7.17 10.33 44.17

12) 1145 Users _ERegNonWkNavIn_a_Icon __ERegNonWkNavIn1 4 0.67 0.67 0.67

12) 1145 Users _EmpSrch_a_Icon __EmpSrch 21 84 0.16 0.16 0.16

12) 1145 Users _EmpSrch_b_EmpTab __EmpSrch 21 84 0.23 0.23 0.23

12) 1145 Users _EmpSrch_c_Search __EmpSrch 21 84 28.95 28.95 28.95

12) 1145 Users _EmpSrch_c_Search.1-10 __EmpSrch 14 56 28.95 28.95 28.95

12) 1145 Users _EmpSrch_c_Search.11-100 __EmpSrch 6 24 1.05 1.05 1.05

12) 1145 Users _EmpSrch_d_Choose __EmpSrch 20 80 29.86 29.86 29.86

12) 1145 Users _EmpSrch_e_ClaimsTab __EmpSrch 20 80 0.38 0.38 0.38

12) 1145 Users _Logoff_a_OK __Logoff 11 44 0.27 0.27 0.27

12) 1145 Users _Logon_a_URL __Logon 93 372 3.06 3.45 3.97

12) 1145 Users _ManRegWk_a_ACC45 __ManRegWk 40 160 0.53 0.56 0.56

12) 1145 Users _ManRegWk_b_Name __ManRegWk 40 160 0.97 1.13 1.13

12) 1145 Users _ManRegWk_b_Name.0-20 __ManRegWk 40 160 0.97 1.13 1.13

12) 1145 Users _ManRegWk_b_Name.1-10 __ManRegWk 40 160 0.97 1.13 1.13

12) 1145 Users _ManRegWk_c_Create __ManRegWk 40 160 2.67 3.06 3.06

12) 1145 Users _ManRegWk_d_Occupation __ManRegWk 40 160 0.48 0.64 0.64

12) 1145 Users _ManRegWk_e_OccSearch __ManRegWk 40 160 0.69 2.12 2.12

12) 1145 Users _ManRegWk_e_OccSearch.1-10 __ManRegWk 28 112 0.39 0.39 0.39

12) 1145 Users _ManRegWk_e_OccSearch.101+ __ManRegWk 2 8 2.12 2.12 2.12

12) 1145 Users _ManRegWk_e_OccSearch.11-100 __ManRegWk 10 40 0.38 0.38 0.38

12) 1145 Users _ManRegWk_f_OccOK __ManRegWk 39 156 1.19 1.36 1.36

Richard Leeke WOPR9 Experience Report 8

Workload
The Rational tool allows user-defined timing points to be recorded, but not other types of

metrics – so we log useful metrics as “pseudo-timers” to allow reporting on the same

timescale as performance measures. This chart simply shows the workload as a percentage of

the total number of users involved in the run.

#pct_users_x1000

0

20

40

60

80

100

120

1
2

:3
2
:3

7

1
2

:4
2
:3

7

1
2

:5
2
:3

7

1
3

:0
2
:3

7

1
3

:1
2
:3

7

1
3

:2
2
:3

7

1
3

:3
2
:3

7

1
3

:4
2
:3

7

1
3

:5
2
:3

7

1
4

:0
2
:3

7

1
4

:1
2
:3

7

1
4

:2
2
:3

7

#pct_users_x1000

run_id Integrated_Plus_N_307 timer_type count txn (All) tiers (All)

%age of peak workload

time

timer

The Degradation Curve
Probably the view of results which we use the most is the degradation curve. In this case, the

chart shows 95
th
 percentile response times against load for each of the periods of steady-state

load.

0

10

20

30

40

50

60

02) 572 Users 04) 687 Users 06) 801 Users 08) 916 Users 10) 1030 Users 12) 1145 Users

_ERN_g_RegOK

_ManRegWk_p_ProvSearch

_CDoc_n_AddDocContinue

_ManRegWk_g_Employer

_ProvPays_d_Txns

_UpdClaimant_f_OKSave

_MyClaims_a_Icon

_EmpSrch_d_Choose

_DeptClaims_a_Icon

_CDoc_p_DocPropsOK

_ERN_c_DoTask

_PWPays_d_Txns

_DeptClaims_b_Tab

_MetaData_g_Barcode

_RapidReg_g_ProvSrch

_ProvPays_e_ProvPays

_ManRegWk_h_EmpSearch

_ManRegWk_r_RegOK

_EmpSrch_c_Search

_SrchIDAC_d_Tab

_RapidReg_h_RegOK

_ERN_a_NextTask

_MyWork_g_Contacts

_MyWork_a_Icon

_MyClaims_k_Indicators

_CDoc_h_SelectClass

_SrchIDAC_f_Save

_MyClaims_e_Contacts

_VDoc_f_OpenDoc

_CaseDetails_Message

run_id Integrated_Plus_N_307 timer_type step txn (All) range_type steady-state tiers (All)

95th Percentile Response

range

timer

Richard Leeke WOPR9 Experience Report 9

Response vs NFR per Transaction
This chart shows the detail of response times (blue) versus non-functional requirements (red)

for all steps making up a particular transaction. Note that for step c) the requirement varies

according to the number of rows returned.

0

1

2

3

4

5

6

_
S

rc
h

N
a
m

e
_
a
_
Ic

o
n

_
S

rc
h
N

a
m

e
_
b
_
P

a
rt

y

_
S

rc
h
N

a
m

e
_
c
_
S

e
a
rc

h

_
S

rc
h

N
a
m

e
_
c
_
S

e
a
rc

h
.1

-

1
0

_
S

rc
h
N

a
m

e
_
c
_
S

e
a

rc
h
.1

1
-1

0
0

_
S

rc
h
N

a
m

e
_
d
_
P

e
rs

o
n

_
S

rc
h
N

a
m

e
_
e

_
C

la
im

95th Percentile Response

95th Percentile NFR

run_id Integrated_Plus_N_307 timer_type (All) txn __SrchName range_type steady-state tiers (All) range 12) 1145 Users

timer

Data

Response Broken Down by Time Buckets
This chart shows the 95

th
 percentile response times in 5 minute buckets over the course of an

8 hour run. Clearly several transaction steps are blocked for extended periods on an hourly

basis. By examining the mix of transaction types exhibiting the spikes, some clues as to

which tiers of the application may be involved can be determined. We have all transaction

steps classified by tier, so the chart can be filtered by tier, looking for patterns.

0

10

20

30

40

50

60

70

80

1
7

:4
6
:1

2

1
8

:1
6
:1

2

1
8

:4
6
:1

2

1
9

:1
6
:1

2

1
9

:4
6
:1

2

2
0

:1
6
:1

2

2
0

:4
6
:1

2

2
1

:1
6
:1

2

2
1

:4
6
:1

2

2
2

:1
6
:1

2

2
2

:4
6
:1

2

2
3

:1
6
:1

2

2
3

:4
6
:1

2

0
0

:1
6
:1

2

0
0

:4
6
:1

2

0
1

:1
6
:1

2

_ERN_g_RegOK

_ManRegWk_p_ProvSearch

_CDoc_n_AddDocContinue

_MyClaims_a_Icon

_DeptClaims_a_Icon

_ERN_c_DoTask

_DeptClaims_b_Tab

_PWPays_d_Txns

_ProvPays_d_Txns

_UpdClaimant_f_OKSave

_RapidReg_h_RegOK

_ERN_a_NextTask

_ManRegWk_r_RegOK

_SrchIDAC_d_Tab

_CDoc_p_DocPropsOK

_MyWork_g_Contacts

_CDoc_h_SelectClass

_MetaData_g_Barcode

_ProvPays_e_ProvPays

_SrchIDAC_f_Save

_MyWork_a_Icon

_MyClaims_e_Contacts

_RapidReg_g_ProvSrch

_EmpSrch_d_Choose

_ERN_j_Finish

_VDoc_f_OpenDoc

_MyWork_i_OKContact

_ManRegWk_g_Employer

run_id Integrated_Plus_N_extend_319 timer_type step txn (All) tiers (All)

95th Percentile Response

time

timer

Richard Leeke WOPR9 Experience Report 10

Distribution of Response Times
A 3-D surface chart can be an effective means of visualising the distribution of response

times for a single transaction step. In this case the chart shows the details of the hourly

spikes from the previous chart, for one particular step. This chart tends to be more effective

as an interactive diagnostic aid than as a snapshot like this, however.

0
:0

0
:0

0

0
:4

0
:0

0

1
:2

0
:0

0

2
:0

0
:0

0

2
:4

0
:0

0

3
:2

0
:0

0

4
:0

0
:0

0

4
:4

0
:0

0

5
:2

0
:0

0

6
:0

0
:0

0

6
:4

0
:0

0

7
:2

0
:0

0

0
1

 0
-2

0
0
0

0
6
 1

0
0
0
0
-1

2
0
0
0

1
1

 2
0
0
0
0
-2

2
0

0
0

1
6
 3

0
0
0
0

-3
2
0
0
0

2
1
 4

0
0

0
0
-4

2
0
0
0

2
6

 5
0
0
0
0
-5

2
0

0
0

3
1
 6

0
0
0
0

-6
2
0
0
0

3
9
 7

6
0

0
0
-7

8
0
0
0

0

5

10

15

20

25

30

35

40

45

50

45-50

40-45

35-40

30-35

25-30

20-25

15-20

10-15

5-10

0-5

timer _ERN_g_RegOK

Sum of count

time

bin

We are also just starting to experiment with a custom-written tool for displaying and

exploring a scatter chart showing all timing points. The challenge is to make it fast enough to

be useful, and to provide intelligent drill-down reporting.

Richard Leeke WOPR9 Experience Report 11

Appendix - Critical Issue we Almost Missed
As mentioned above, one of the workarounds we used to get around tool limitations almost

caused us to miss a critical issue shortly before the system first went live.

We were experiencing two significant problems when we attempted to run extended duration

tests. Firstly the volume of results data was exceeding the limits Rational could report on (or

even export) for a single run. About three hours at peak load was the most we could manage,

yet we wanted to run for ten to twelve hours non-stop. Secondly, there was a significant

memory leak when executing scripts, leading to the load generators running out of memory

after around four hours.

We only discovered these in the final phases of testing before initial go-live – we simply

hadn’t been in the position to attempt long test runs earlier. We had a few sampling

techniques to reduce the volume of results data (which was not ideal but capable of

delivering worthwhile results). However the memory leak was a worry. We had no idea

whether this was caused by a fault in our heavily customised scripts or a bug in the

underlying Rational engine. We therefore could not predict with any certainty how long (if

ever) it was likely to take to resolve.

We decided that we didn’t have time to discover how long this particular piece of string was,

so dreamt up a hair-brained scheme to get around the problem. We decided to break a ten

hour run into five, two-hour chunks. The trick was that for the test to be valid we needed to

resume the existing user sessions at the start of each new “chunk”. Simply abandoning or

logging off the existing sessions and logging on again would have given completely different

patterns of memory usage in the application servers.

It actually proved relatively simple to save session state (predominantly current session

cookie values) to files at the end of each chunk and then resume the sessions in the next

chunk of the run – driving the successive chunks by running Rational repeatedly from a

wrapper perl script. We were reasonably confident that we were modelling session memory

usage accurately, and couldn’t see any reason why the brief pauses should distort anything.

Wrong. In fact what happened was that the five minute pauses with no activity gave the

JVM’s garbage collector a chance to come-up for air (in some way that we never really

understood), which had the effect of delaying the onset of an issue causing the JVM to switch

to a far more aggressive GC mode – at which time the system became effectively unusable.

Luckily we were nervous enough about the possible effects of the pauses that we tried a

longer duration single run with much reduced logging, which happened to show up the issue

before the memory leak in the VU processes became a problem.

We subsequently identified the major cause of the memory leak, and took to writing our own

timing data out to flat-files, rather than relying on the Rational repository – so we can now

run long runs non-stop.

