

Copyright © 2005 Collard & Company

Case Study 1.1

 SYSTEM
PERFORMANCE

TESTING

A CASE STUDY

Part 1: Developing the Test Strategy

Ross Collard
Collard & Company

New York, NY

Version 5.5, February 2005

Table of Contents – Part 1 of the Case Study

Copyright © 2005 Collard & Company

Case Study 1.2

 INTRODUCTION TO THE CASE STUDY...12
OVERVIEW...12

The Rationale for this Case Study ... 12
Skills Needed for the Case Study .. 13
Organization of this Case Study... 13
Learning Objectives ... 14
Disclaimers.. 15
The Assumptions behind this Book ... 16
Terminology... 19
The Use of Mathematics in this Case Study... 19

USING THE CASE STUDY..20
The Concise versus the Full Version of the Case Study .. 20
A Friendly Warning... 20
The Exercises ... 21
The Suggested Answers ... 21
Sequence of the Steps in the Test Methodology (and thus the Exercises).. 22
Exercise Options .. 22
Time Required for the Exercises .. 22

I. THE CONCISE VERSION OF THE CASE STUDY...23
EXERCISE 1.1: REVIEWING THE PERFORMANCE TESTING OBJECTIVES ..23

Objectives.. 23
Instructions .. 23
Questions to Address .. 23

DESCRIPTION OF THE SITUATION, SECTION A: THE BUSINESS CONTEXT ...23
Background ... 23
Your Role... 25
Business Goals... 25
Success Criteria ... 25
Testing Objectives.. 26

EXERCISE 1.2: MODELING THE ARCHITECTURE...26
Objectives.. 26
Instructions .. 26

DESCRIPTION OF THE SITUATION, SECTION B: THE SYSTEM ARCHITECTURE ..27
EXERCISE 1.3: SPECIFYING THE PERFORMANCE REQUIREMENTS...29

Objectives.. 29
Instructions .. 29

EXERCISE 1.4: PERFORMING THE INITIAL IMPACT ASSESSMENT..31
Objectives.. 31
Instructions .. 31
Levels of Demand – Peak Load ... 35
Assumptions.. 36

Introduction to LAN Models ..36
LAN Model for Low Traffic... 37
LAN Model for Moderate to High Traffic.. 39

LAN Utilization Worksheet ..43
LAN Utilization Worksheet ..47

EXERCISE 1.5: DECIDING WHERE TO OBSERVE AND WHAT TO MONITOR ...49
Objectives.. 49
Instructions .. 49

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.3

EXERCISE 1.6: SELECTING THE METHODS OF TESTING ..49
Objectives.. 49
Instructions .. 49

EXERCISE 1.7: DETERMINING THE TEST FOCUS AND COVERAGE...51
Instructions .. 51
Questions to Address – Load Demand Risks... 51
Questions to Address – Infrastructure and Design Risks ... 52

EXERCISE 1.8: CALCULATING THE TEST WORK LOAD...54
Objectives.. 54
Instructions .. 55
Questions to Address .. 55

A. Test Work Load Volumes..55
B. Test Execution Logistics ...61

DESCRIPTION OF THE SITUATION, SECTION C: VOLUMETRIC ASSUMPTIONS..62
User Demand .. 62
Session Statistics ... 62
Peak Loads ... 63

EXERCISE 1.9: BALANCING EXPLORATORY AND STRUCTURED TESTING ...63
Objectives.. 63

EXERCISE 1.10 REVIEWING A DETAILED TEST SCENARIO..64
Objectives.. 64
Instructions .. 64

DESCRIPTION OF THE SITUATION, SECTION D: PERFORMANCE TEST SCENARIO ..65
Description of the Test Scenario .. 66

EXERCISE 1.11 DESIGNING THE TEST ENVIRONMENT..67
Objectives.. 67
Questions to Address .. 67

EXERCISE 1.12: ESTIMATING THE NUMBER OF TEST CYCLES ..67
EXERCISE 1.13: REVIEWING THE PERFORMANCE TEST PLAN...67

Performance Test Plan Review Checklist... 68

II. THE FULL CASE STUDY: UNDERSTANDING THE SITUATION..79
EXERCISE 2.1: REVIEWING THE PROPOSED TESTING OBJECTIVES..79

Introduction.. 79
Instructions .. 79
Questions to Address .. 80

FOLLOW-UP: TEAM DISCUSSION OF THE TESTING OBJECTIVES ...82
Instructions .. 82

DESCRIPTION OF THE SITUATION, SECTION 2.A: THE BUSINESS CONTEXT ..83
A.1 Overview..83

A.1.1 Context.. 83
A.1.2 Objectives ... 83

A.2 The Business Background..83
A.3 Your Responsibilities ...84
A.4 The Basic Functions of the System ..84
A.5 The Interfacing Systems...85
A.6 The Business Operations and Processes ...86
A.7 System Work Flows..87

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.4

A.8 The Business Objectives for the System...88
A.9 The Performance Goals...89
A.10 System Constraints...90

A.10.1 Usability ... 90
A.10.2 Data Availability and Integrity ... 90
A.10.3 Security.. 91
A.10.4 Maintainability ... 91

A.11 Assessment of the Current System Performance and Robustness..92
A.12 The Performance Testing Objectives...92
A.13 Trade-offs...93

EXERCISE 2.2: MODELING THE ARCHITECTURE...94
Introduction.. 94
Instructions .. 94

DESCRIPTION OF THE SITUATION, SECTION 2.B: THE SYSTEM ARCHITECTURE ...98
B.1 Architecture Overview ...98

B.1.1 Infrastructure Design Goals and Principles... 100
B.1.2 Logical Vs. Physical Design .. 101
B.1.3 Design Review and Validation .. 103

B.2 Designing for High Availability...103
B.2.1 Designed-In Redundancy ... 103
B.2.2 Designed-In Scalability.. 104
B.2.3 Clustering and Fail-Over.. 104
B.2.4 Geographic Dispersion .. 104
B.2.5 Locations and Assignments of the Servers... 105

B.3 Major Tiers and Work Load Distribution..105
B.3.1 The Front-End ... 106
B.3.2 The Back-End ... 106
B.3.4 Load Balancing ... 107
B.3.4.1 Network Load Balancing for the Front-End .. 107

B.4 The Web Sites...108
B.4.1 The Primary Web Site.. 108
B.4.2 Providing Web Services... 108
B.4.3 Proxy Servers.. 109
B.4.4 Web Databases .. 109
B.4.5 Location of Web Content Storage .. 109
B.4.6 The Secondary Web Site... 110

B.5 The Data Architecture ...110
B.5.1 The Data Content ... 110
B.5.2 Data Conversion ... 110
B.5.3 Database Size... 111
B.5.4 The Database Servers ... 111
B.5.5 Data Distribution and Mirroring ... 111

B.6 Networks and Communications ...112
B.6.1 The Network Topology at Headquarters ... 112
B.6.2 Network Interface Cards (NICs) ... 113
B.6.3 Utilization of Network Technologies ... 113
B.6.4 The E-Mail and Fax Servers ... 113
B.6.5 The Voice Telephone Servers .. 114
B.6.6 The Wireless Routers or Servers ... 114
B.6.6 The West Coast Remote Location Servers .. 114

B.7 Other Subsystem and Component Descriptions...115

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.5

B.7.1 The Application Servers... 115
B.7.2 The Print Servers.. 115
B.7.2.1 Print Out-Sourcing... 115
B.7.3 The Support Software .. 115

B.8 Security Considerations...116
B.8.1 IP Addresses ... 116
B.8.2 Firewalls ... 116
B.8.3 Trade-offs of Security and Performance .. 116

B.9 Scalability Considerations...117
B.9.1 Application Processing Scalability... 117
B.9.2 Database Scalability.. 117
B.9.3 Network Scalability .. 117

B.10 System Implementation ..117
B.10.1 Re-Use of the Existing Equipment .. 117
B.10.2 The System Implementation Strategy .. 118
B.10.3 Physical Installation and Set-Up of the Equipment... 118

B.11 Architecture Evaluation...118
B.11.1 Review History.. 118
B.11.2 Likely Performance Vulnerabilities... 119
B.11.3 Possible Bottlenecks.. 119
B.11.4 Test Suggestions from the Technical Community ... 120

B.10.4.1 Database Performance ... 121
B.10.4.2 Web Site Performance .. 121
B.10.4.3 Maintainability ... 121

EXERCISE 2.3: SPECIFYING THE PERFORMANCE REQUIREMENTS...122
Instructions .. 122

EXERCISE 2.4: PERFORMING THE INITIAL IMPACT ASSESSMENT..124
Instructions .. 125
Simplifying Assumptions.. 127

III. DETERMINING THE PERFORMANCE TEST APPROACH ..131
Introduction.. 131

EXERCISE 2.5: DECIDING WHETHER TO OUTSOURCE...131
Instructions .. 131
Introduction.. 132

Advantages of Outsourcing..133
Disadvantages of Outsourcing...134
Outsourcing Work Sheets...135

Advantages of Outsourcing... 135
Disadvantages of Outsourcing ... 136

EXERCISE 2.6: SELECTING THE METHODS OF TESTING ..137
Instructions .. 137
Test Methods Work Sheet... 138

EXERCISE 2.7: DETERMINING THE TEST FOCUS AND COVERAGE...140
Instructions .. 140

Questions to Address (A: Primary Factors)...141
Questions to Address (B: Secondary Factors) ...141

EXERCISE 2.8: CALCULATING THE TEST WORK LOAD...144
Instructions .. 144

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.6

Questions .. 144
A. Test Work Load Volumes..144
B. Test Execution Logistics ...146

DESCRIPTION OF THE SITUATION, SECTION 2.C: VOLUMETRIC ASSUMPTIONS...147
C.1 Measurements and Assumptions..147
C.1.1 User Demand...147
C.1.2 Session Statistics..147
C.1.3 Hits and Views ...148
C.1.4 Peak Loads ..148

EXERCISE 2.9: BALANCING EXPLORATORY AND STRUCTURED TESTING ...149
Instructions .. 149

How Much Do We Know?..151
EXERCISE 2.10: DEVELOPING YOUR TEST AUTOMATION FRAMEWORK ..151

Assessing Readiness for Test Automation ..151
Designing the Automation Framework ..152

EXERCISE 2.11: ESTIMATING THE NUMBER OF TEST CYCLES ..153
EXERCISE 2.12: DEFINING THE ROLES AND RESPONSIBILITIES ..154
EXERCISE 2.12 BUILDING FLEXIBILITY INTO THE PERFORMANCE TESTING ...154
EXERCISE 2.13 COORDINATING PERFORMANCE TESTING WITH OTHER ACTIVITIES ...155

IV. SPECIFYING THE TESTS ...156
EXERCISE 2.14: DEVELOPING THE PERFORMANCE TEST SCENARIOS ...156

Instructions .. 156
DESCRIPTION OF THE SITUATION, SECTION 2.D: PERFORMANCE TEST SCENARIOS ...158

D.1 A (Claimed) High-Opportunity Test Scenario ...158
D.2 A Detailed Version of the Test Scenario..158

D.2.1. Description ... 158
D.2.2. Purpose and Intended Use.. 159
D.2.3. Justification .. 161

D.2.3.1 Possible Outcomes.. 161
D.2.4. Target Audience.. 161
D.2.5. Performance Requirements addressed by this Scenario.. 162
D.2.6. Hypotheses to be Proven or Disproven ... 162
D.2.7. Description of the Test Scenario .. 163
D.2.8. Test Infrastructure .. 163

D.2.8.1 Test equipment.. 163
6.2.9. Pre-conditions .. 165
6.2.10. Expected Actions... 165
6.2.11. Timings ... 165
6.2.12. Post-conditions .. 166
6.2.13. Test Work Loads ... 166
6.2.14. Types of Testing to be Utilized .. 167
6.2.15. Types of Testing that are NOT included in this Project ... 167
6.2.16. Automated Test Scripts Used in this Scenario.. 167
6.2.17. Manual Test Scripts .. 169
6.2.18. Data Collection Plans ... 169
6.2.19. Data Interpretation and Analysis Plans .. 169
6.2.20. Results Evaluation and Reporting... 169

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.7

6.2.21. Proof of Concept / Trial Run .. 170
6.2.22. Project Management and Status Tracking .. 170

EXERCISE 2.14: SELECTING THE TEST TOOLS ..170
Instructions xxx ... 170

EXERCISE 2.15: USING THE TEST TOOLS ...170
Instructions .. 170
Questions to Address .. 171

EXERCISE 2.16: COLLECTING THE PERFORMANCE DATA...171
Questions to Address .. 171

EXERCISE 2.17: ANALYZING THE PERFORMANCE DATA..171
Questions to Address .. 171

EXERCISE 2.18: IDENTIFYING AND REVIEWING THE OUTSTANDING ISSUES ...172
Questions to Address .. 172

DESCRIPTION OF THE SITUATION, SECTION 2.E: SUPPORTING INFORMATION ..172
E.1 System Usage Demographics ..172
E.1.1 Timing of the Occurrences of Peaks ..173
E.2 Feature List and Operational Profile ..173
E.2.1 Customer Service Group..173
E.2.2 Catalog Publishing Group...174
E.2.3 Warehouse Group..175
E.2.4 Information Systems Group ...176
E.2.5 Senior Management Group ...176
E.3 Transaction Lengths ..176

E.3.1 Customer Service Group ... 177
E.3.2 Catalog Publishing Group.. 177
E.3.3 Warehouse Group .. 177
E.3.4 Information Systems Group .. 178
E.3.5 Senior Management Group ... 178

E.4 Other Systems on the Shared Infrastructure..178
E.4.1 Frequency of Utilization ..178

E.4.1.1 Billing Group... 179
E.4.1.2 Publisher Ordering Group .. 179
E.4.1.3 Marketing Group.. 179
E.4.2 Transaction Lengths... 179

E.5 Growth Projections..179
E.6 Changing Mix of Demands ..180
E.7 Service Level Agreements (SLAs) ..180
E.8 System Development and Feature Testing Methodologies ..181
E.9 Automated Test Facilities ..182
E.10 Test Conditions and Constraints ...182

EXERCISE 2.19: TRANSITIONING TO POST-DELIVERY LIVE PERFORMANCE MONITORING183
Introduction.. 183

EXERCISE 2.20: TEAM DISCUSSION OF THE REMAINING TEST ISSUES..183
Instructions .. 183

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.8

APPENDICES..184
Appendix A. Basic Definitions and Concepts...184
Appendix B. Establishing Performance Requirements ..239

An Example of a System Performance Requirement.. 239
The Process for Setting Requirements ... 240
Setting Performance Requirements Early... 241
Mapping from the User’s Perspective to the System Administrator’s ... 242
Including a Performance Focus in the System Design ... 242
Defining the Workloads ... 243
Bypassing Load Calculations.. 243
Performance Objectives .. 243

Appendix C. The Initial Impact Assessment...244
Introduction.. 244
The Purpose and Nature of the IIA .. 244
Types of Impact Assessment.. 245
The Scope of the IIA .. 245
Prioritizing the Performance Test Needs .. 246
What Situations Need to be Assessed?.. 248
Prioritizing Within Systems.. 248
The Prioritization Process ... 249
When to Conduct the IIA ... 250
Potential Funding Issues ... 250

Appendix D. Roles and Responsibilities ..251
Overview.. 251
The Role of the CIO and Senior Managers .. 251
The Role of System & Network Administrators .. 252
The Role of the Testers ... 253
The Performance Test Team.. 253
A Caution ... 253

Appendix E. Performance and Robustness Testing Methods...254
Approaches to Testing... 254
1.0 Testing which is driven by what we want to measure. .. 254
2.0 Testing which is based on the source or type of the load. ... 254
3.0 Testing which seeks to stress the system or find its limits... 255
4.0 Testing which focuses on the impact of changes.. 255

Appendix F: Challenges in Performance and Robustness Testing ..256
Why is Performance Testing Difficult? .. 256
Common Issues of the Testers .. 256
A. Background Knowledge .. 257

A1. Understanding of the System and its Context .. 257
A2. Slope of the Learning Curve.. 257
A3. Availability of a System Model .. 257
A4. The System Scope and Boundaries .. 257

B. The Testware ... 258
B1. Adequacy of the Test Facilities ... 258
B2. Adequacy of the Test Work Loads ... 258
B3. The Overhead and Logistics of Testing the System ... 258
B4. Unanticipated Glitches in the Test Environment... 259

C. The Live and Test Environments .. 259
C1. Environment-Specific Issues ... 259
C2. Mixed Environments ... 260

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.9

C3. The Impact of New and Improved Technologies ... 260
C4. Large Numbers of Testable Configurations .. 260

D. The Testing Tools ... 261
D.1 Expense and Complexity of the Tools ... 261
D.2 Tool Limitations .. 261
D.3 Mis-Use of Tools ... 262

E. The Test Methods ... 262
E.1 Testability.. 262
E.2 Deciding What to Measure.. 262
E.3 Lack of Repeatability... 262
E.4 Interpretation of Results.. 263
E.5 Problem Isolation .. 263
E.6 Validity and Credibility of the Results... 263

F. Project Management ... 263
F.1 Late Occurrence in Projects.. 263
F.2 Testing without Pre-defined Exit Criteria ... 264
F.3 “Trivial” Changes which have Widespread Consequences .. 264
F.4 Specialized Expertise Required ... 264
F.5 Coordination of Specialists ... 264
F.6 Lack of Candor.. 265
F.7 Unexamined Information... 265
F.9 Lack of Buy-In ... 265

Appendix G. The Test Automation Framework..266
Integration of the Test Tools ... 275

Appendix H. Test Automation Activities...277
A. The Overall Approach ... 277
B. Support .. 277
C. Review of the Current Situation ... 277
D. Justification of Test Automation... 278
E. Assessment of Automation Effectiveness .. 278
F. Outsourcing .. 278
G. Automation Start-Up .. 278
H. Planning for Test Automation... 278
I. Automated Functional and Performance Test Plans .. 278
J. People and Organization Factors .. 279
K. Tool Utilization.. 279
L. Test Policies and Procedures .. 280
M. Automation of System Requirements and Design ... 280
N. Automation of System Development and Maintenance.. 280
O. Performance Testing.. 280
P. Robustness Testing... 281
Q. Test Environment Management ... 281
R. Test Data Management .. 281
S. Test Case Development ... 282
T. Test Execution.. 282
U. Problem Management and Resolution.. 282
V. Manual versus Automated Testing.. 282
X. Test Project Management .. 282

Appendix I. Avoiding Performance Surprises..283
1. Early Design Reviews ... 283
2. Use of Prototypes for Load Testing... 284
3. Performance Prediction .. 284

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.10

4. Early Check-out of the Test Facilities ... 284
5. Early Component-Level Performance Testing ... 284
6. Early Trial Full-System Load Testing .. 285
7. Use of Simulators for the Test Environment .. 286
8. Designing for Performance... 286
10. The Performance Review .. 288

Have Timely Access to the Reviews ... 289
Review the System Architecture ... 289
Understand How the System Works ... 289
Review the Process Flow Model .. 289
Understand How the System will be Used ... 289
Walkthrough the Topology to Look for Bottlenecks... 289
Review the Operational Track Record of similar other Systems.. 290
Review the Use of Shared Resources ... 290
Determine How to Minimize the Wait Times ... 290
Decide Where to Focus the More In-Depth Performance Review ... 290
Review each High-Potential Component ... 291
Review the Efficiency of Computations ... 291

11. Designed-In Flexibility for Tuning ... 292
12. Review Questions... 292
13. Designing for Testability: Assessing Testability ... 294
14. The Characteristics of a Testable System .. 295

Appendix J. System Architecture Diagrams...296
J.1 User-Oriented Architecture ... 296
J.2 Function-Oriented Architecture... 297
J.3 Geographically-Oriented Architecture.. 298
J.4 Device-Oriented Architecture.. 299

Appendix K. Template of the Performance Testing Work Plan ...300
Part A: Test Preparation.. 300
Part B: Execute the Tests and Evaluate the Results .. 305

System Performance Testing

Copyright © 2005 Collard & Company

Case Study 1.11

 About Ross Collard

The author of this book, Ross Collard, is president of Collard & Company, a consulting
firm which is headquartered in New York City and specializes in software testing and
quality. His clients have included ADP, Alcatel, American Express, Anheuser-Busch,
Apple, AT&T, Bank of America, Blue Cross/Blue Shield, Cisco, Computer Associates,
Dayton Hudson, Dell, EDS, Exxon, General Electric, Goldman Sachs, Hewlett-Packard,
Hughes Aircraft, IBM, Intel, JP Morgan, Merck, Microsoft, Motorola, Nortel, Novartis,
Novell, Procter & Gamble, Prudential, SIAC, Siemens, State Farm Insurance and
Verizon. His government clients have included NASA, Federal Reserve Bank, State of
California and U.S. Air Force.

Ross has conducted seminars on software testing and quality for businesses,
governments and universities, including George Washington, Harvard and New York
Universities and U.C. Berkeley. He has a BE in Electrical Engineering from the
University of Auckland, New Zealand, an MS in Computer Science from the California
Institute of Technology and an MBA from Stanford University’s Graduate School of
Business. He can be reached at rcollard@attglobal.net or 1 (212) 941-5962.

Acknowledgements

I would like to gratefully acknowledge the help of the many people who have reviewed,
commented and contributed to this book. They include James Bach, Scott Barber,
Michael Bolton, Julian Harty, Linda Hamm, Doug Hoffman, Paul Holland, Dave Jewell,
Chris Johnson, Philip Joung, Cem Kaner, Mike Kelly, Nancy Landau, Brian Marick, Jude
McQuaid, Daniel Navarro, Hung Nguyen, Noel Nyman, Dale Perry, Avinash Persaud,
Bret Pettichord, Martin Pol, Greg Pope, Johanna Rothman, Rob Sabourin, Drew
Slikowsky, Steve Splaine, Roland Stens, Elaine Weyuker and Karl Wiegers.

A good deal of credit for this book has to go to my consulting clients over the years, for
providing both real-world challenges to learn from and the income to sustain the writing
of these books. I would also like to thank the more than 50,000 students who have
attended our seminars on software testing and quality assurance from the period from
1990 to the present, and who have contributed many insights, found many bugs in the
materials, and have asked many penetrating questions which have stretched my
thinking.

mailto:rcollard@attglobal.net

System Performance Testing

Copyright © 2005 Collard & Company

Case Study 1.12

Introduction to the Case Study

This case study describes a situation in which a performance test is needed. Your
assignment is to identify and analyze the business and technical issues and develop a
test strategy for the situation. This strategy describes how you will use testing to predict
the system’s actual performance, in order to assess whether it will be acceptable in live
operation.

Overview

The Rationale for this Case Study

Today’s personal computers and even mobile phones run hundreds of thousands of
times faster than IBM’s first computer. Network speeds have increased and database
storage costs have dropped by a factor of more than a million. System performance
engineering and software optimization have advanced from sparse, hit-or-miss rules of
thumb to quasi-respectable professional fields. So why bother to test system
performance and robustness? I’d like to describe the problem by telling a story. Imagine
that you have made a heroic effort to deliver a system under unreasonable deadlines
and with limited staff and equipment. You scrupulously test to ensure the features work
as expected, and then release the system. You monitored the performance as a
byproduct of feature testing, and everything seemed fine in the test lab. A few days
later, you receive a call from a senior executive in the client community. You are
expecting words of appreciation, but he can only moan and rant about what you have
done to him. Our story ends on a sad note. The system’s features work, but:

• The system response time is slow.

• The throughput (the volume of concurrent demands that the system can handle),
is low.

• The system cannot handle peak loads or sudden surges in demand.

• It is fragile and readily crashes or hangs, and cannot recover from errors.

• It does not work the same on all the users' workstation configurations.

Introduction to the Case Study

Copyright © 2005 Collard & Company

Case Study 1.13

• Intermittently, user actions that should be independent and isolated other

apparently interact and interfere with each other. These problems occur under
heavy load but cannot be observed under normal load.

• The system works fine in the test lab but does not scale up – there appear to be

hidden bottlenecks.

• The system’s resource use is prohibitively expensive. It is a “resource hog”.

Ouch. If you identify with this story -- you have “been there, done that” -- and would
prefer not to re-live the experience, then this case study is for you. Or if you have never
been there and want to keep it that way, this will help you too.

Skills Needed for the Case Study

This case study and its exercises do not require specialized expertise in any particular
field, such as e-commerce system design, queuing theory, statistical sampling or
network engineering. They do require a familiarity with information systems technology,
such as a sense of what a local area network (LAN) does or how a database works.

Organization of this Case Study

The case study contains six main parts:

Part 1, Developing the Performance Test Strategy: In this part, you will address how to
test a system’s performance. The strategy you develop will include the test objectives
and focus, justification, scope, technical and business issues, risk factors and your
recommendations for the overall test approach.

Part 2, Developing the Test Strategy -- Suggested Answers to Part 1: You will critique
suggested answers to the questions in Part 1, and either concur or suggest revisions
and improvements to these answers. Part 2 is not complete -- answers have not been
published yet for all the exercises in Part 1.

Part 3, Reviewing the Proposed Test Strategy: You will review and issue an opinion on
a proposed test strategy. This strategy is presented in the form of an executive
summary and a comprehensive set of appendices with the supporting details. (Parts 3
through 6 are not included in this set of documents.)

Introduction to the Case Study

Copyright © 2005 Collard & Company

Case Study 1.14

 Part 4, Reviewing the Consultants’ Report: Subject matter experts (the consultants)
have rendered an opinion on the adequacy of the proposed test strategy in Part 3.

Your job is to determine which of the consultants’ findings and conclusions are valid and
worth acting on, and what corrective actions to take.

Part 5, Reviewing a “Practical” Test Strategy: In this part, an alternative approach is
presented, which was developed based on the consultants’ feedback. You will review
and compare this alternative to the original proposed approach, and determine which of
the two strategies is the most suitable, or what mix of the two you recommend.

Part 6, Developing the Robustness Test Strategy: You will review and critique the
proposed strategy for testing the systems’ reliability and recoverability.

Learning Objectives

The lessons you will learn from this case study and series of exercises include:

• Planning and preparing for effective performance testing:

• How to develop a performance test strategy in a typical mixed-technology,
mixed-vendor environment with multiple interdependent application systems.

• How to set performance goals and testing objectives.

• How to perform a risk assessment and use it to focus and prioritize the test

efforts.

• How to design the test lab, and allow for the differences between the lab and the
real-world infrastructure which will be utilized in live operation.

• How to design realistic test work loads.

• Executing performance tests and evaluating results:

• How to use automated load testing tools effectively, and minimize opportunities

for tool mis-utilization.

• How to decide what to measure and what data to collect.

• How to organize and run a performance test.

Introduction to the Case Study

Copyright © 2005 Collard & Company

Case Study 1.15

 • How to interpret the harvest of performance data and form meaningful,
trustworthy conclusions about performance in live operation.

• Why and how system performance testing is fundamentally different from

performance engineering, system optimization and feature testing.

Disclaimers

The organizations described in this case study are fictional, and not intended to
represent any real organizations.

Testing tools from various vendors are mentioned in this case study and its
accompanying series of exercises. None of these mentions should be construed as an
endorsement of a particular vendor or a recommendation of a particular tool.

Trademarked names, such as the names of software testing tools, appear in this book. I
am using these names for illustration purposes only, with no intention of infringing on
the trademarks. Not all the tool information in this book will be up to date. There are
many testing tools on the market, and the vendors continually introduce new ones and
frequently upgrade the features of existing ones. For the latest and most accurate
information, check with the vendors directly.

The book draws on a great many ideas from many sources. I provided credit in the
section entitled “Acknowledgments”, but there still may be some use of published or
unpublished ideas which I have used without proper attribution to the original author(s).
This misuse is inadvertent, and I will correct it as promptly as possible when I am
notified.

Since the primary target audience for this book is working practitioners rather than
academic researchers, the book does not contain extensive footnotes, academic
citations and an exhaustive bibliography of reference works. The ideas in this book have
come mainly from my and others’ on-the-job experiences, not from a literature search.

The book contains quantitative information to help describe software testing norms,
poor and best practices. Much of this information is not based on scientifically rigorous,
statistically valid experiments. Software and system quality are fast moving fields where
there is a dearth of rigorous data. Despite the lack of rigor in its collection, information
which appears reasonably accurate based on my experience is included to provide as
full a picture as possible.

Introduction to the Case Study

Copyright © 2005 Collard & Company

Case Study 1.16

 Microsoft has published a similar performance testing case study, for a fictional firm
called the Duwamish Book Store. The web-based business functions supported by the

system in their case study include point-of-sale, order entry, shipping and receiving, and
a book catalog. The case study in this book was published in a substantially complete
version well before Microsoft published theirs. The Duwamish Book Store case study is
worth reviewing as a counterpoint to this one. Microsoft’s case study is simpler and less
rich in issues, so it may be worth looking at first, before you get into the complexities
and nuances of this case study.

All errors are the responsibility of the author, who would appreciate any feedback about
defects or suggested improvement opportunities.

The Assumptions behind this Book

I have written this book based on the following assumptions.

You, the reader of this book, are intelligent and curious. You are motivated to learn how
to become more effective as a tester, believe that quality is important and that you have
an important role to play in software quality. You enjoy the satisfaction of a job well
done.

You are willing to work in order to gain an important benefit. Most exercises in this book
take at least 30 to 45 minutes and many take hours to answer well, even though the
most time-consuming part has already been done for you, which is the gathering and
organization of the data needed to answer the questions. If you zip through an exercise
in 5 to 10 minutes, you may feel like congratulating yourself for being so smart. But it is
unlikely that you have gotten the full value from the exercise and seen its important
nuances.

You do not work in an overly hostile environment. You can ask questions on the job
without the risk of looking stupid, and the other busy people who you work with are
cooperative. You have access to people like software engineers and system users to
get your questions answered.

You will not have to master any specialized terminology in order to read this book.
Unfortunately, there is no universal consistency of terminology in the testing world. For
example, people use terms like test case, test script, test condition and test scenario
interchangeably, or alternatively can mean different things to different people. In an
effort to be rigorous, I could have begun this book with a long series of definitions. This
specialized terminology, while precise, would probably be outside the common
vernacular of most testers, so you the reader would have to mentally translate as you
read. In addition, I did not want you to have to wade through many definitions before

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.17

getting to the substance. I can promise, however, that the ways in which I use terms in
this book are as much or more in the mainstream of common test usage than any other
terminology. Appendix A provides a glossary of terms.

You are always working under deadline pressures, and you may not always have the
luxury of crossing every At@ according to some formal testing methodology.
Nevertheless, the deadlines which Athey@ impose on you are merely ambitious, feasible
but not impossible.

Being able to analyze, reason, observe, evaluate and think critically is much more
important to your success as a tester than being able to mindlessly follow directions, or
mindlessly filling out forms so that your test case documentation looks great in a
superficial review.

You do not always have complete, correct and well-written functional specifications for
the systems you are testing. Unfortunately, specs like those are a fantasy for most
testers. If we had those great specs and perfect information, the testers' job would be
easy. The hard part is getting usable, specific and trustworthy information in the first
place, and analyzing the specs for testability.

The real world is a lot more complicated and messy than the worlds assumed in many
books. We cannot ignore real-world complications like the volatility of testing situations
in this fast moving world. Dealing with rapid and last-minute changes in the system
functionality and technical environment, and bug fixes which introduce inadvertent side
effects, etc., is a way of life for most testers.

In this book, we grapple with the real-world issues that testers face every day, like
handling deadline pressures, vague functional specs., managers who do not understand
testing, uncooperative software engineers, staff turnover, gremlins in the test
environment, etc. These complications are not so overwhelming that it becomes
impossible for you to do your job, though. In that situation, you don=t need a book, you
need a fire extinguisher.

You do not know how to develop a test plan or need to read a book on test planning as
a prerequisite to this book. Test case design (micro-planning) is done within the context
and framework of a test plan (macro-planning), which established the overall objectives,
scope and approach for a test project. In the exercises, we will assume that the test
team leader has already prepared a test plan or otherwise provided the direction you
need for developing the test cases.

Table of Contents – Part 1 of the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.18

All testing is context-specific. The exercises in this book add value, by showing
examples of how the techniques work, but you will still have to examine for yourself how
each technique applies in your situation. I suggest that as you read each section of the
book you continually ask yourself:

o Will this technique be helpful for me?

Introduction to the Case Study

Copyright © 2005 Collard & Company

Case Study 1.19

 o If so, how, when and where can I apply it in my work?

o What support do I need from my boss or others to make this succeed for me?

Finally, I suggest that you do not view this book as eternal truth, but view it with a critical
eye and apply common sense to determine whether and how its recommendation will
work for you.

Welcome to this book, and may you have a great learning experience.

Terminology

There is no universal consistency of terminology in the field of testing. My choice has
been to use the popular vernacular. I can promise that the terms used in this book are
as much or more in the mainstream as any other. This means that the terms I use are
not necessarily consistent with standards like the IEEE glossary or ISO. In my
observation, the definitions of terms in these standards are little used by working
practitioners. Put in another way, we’ll use the equivalent of everyday Italian, not high
church Latin. Appendix A provides a glossary of terms.

The Use of Mathematics in this Case Study

This book contains a little math, the minimum that we can get away with. Specialists like
statisticians have evolved specific notations for mathematical expressions, which are
the accepted standards within the communities of specialists. Since this is not a book
for specialists, though, I have not attempted to comply with those notations. I have not
published any mathematical proofs and have not strived for mathematical rigor.

This book is pragmatic and based on my and others’ experiences, observations and
rules of thumb. It may be dismissed by a theoretician as voodoo and superstition. The
problem is that many of the topics of interest lie in relatively unknown territory – we
simply do not have the theories, models and equations with which to compute the
answers to our questions. In my opinion, there are rich and fascinating opportunities for
applying mathematical and statistical techniques to performance testing. These
techniques include design of experiments, sampling, factor analysis and ANOVA.
However, they are outside the scope of this book.

Introduction to the Case Study

Copyright © 2005 Collard & Company

Case Study 1.20

Using the Case Study

The Concise versus the Full Version of the Case Study

Case studies usually are not scalable, which leads to a dilemma. Either we can use a
“dumbed down” version of a case study with exercises that are fairly easy, but is too
simplistic to see how its lessons apply to the real world. Or we can use a case study
which faithfully reflects the full harshness of reality, but contains so many complexities,
nuances and uncertainties that nobody can do the exercises.

To resolve the dilemma, this book contains two parallel case studies. One is for a small
business with a web site and a few workstations on a local area network. The other is
for a much larger variation of the same business, with hundreds of times more revenue
than the small business, and with hundreds of times more system traffic. The case
studies are parallel in that you will address the same series of questions to develop a
test strategy, but your answers will be different based on the context. The concise
version of the case study contains quicker and easier exercises. The full version
contains complications which are non-existent or transparent in the concise version, so
comparing the two provides a sense of the scalability of the issues and solutions. You
can work through the concise version, the full version, or both.

A Friendly Warning

The questions in the exercises may seem easy at first reading, but they can be difficult
to answer. They require us to use judgment and think the situation through. They are
also hard because the information that you are provided (as you will see in the next few
pages) is not perfect -- just like in the real world. There is incomplete information, some
uncertainty about the credibility and accuracy of portions of the information, unresolved
issues and information which is open to interpretation in this case study. Sometimes
testers get into “analysis paralysis” -- they feel that they cannot do anything at all unless
they first know everything about the situation. However, we cannot wait until we have
perfect information; the test strategy will never be formed.

Ironically, there also is information overload – whereas in some areas we are not told
enough information, in others we may feel overwhelmed by details. Despite the
temptation we sometimes have to want to know everything about a situation, attempting
to master all the information available can be a daunting task. A great deal of
information is presented in the next few pages, as background for the exercises, and an
important part of the test planners’ job is simply to become comfortable with the
situation. I am not talking about ignorance-is-bliss comfort, but the confidence that
comes from asking probing questions and realizing that the answers make sense to us

Introduction to the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.21

– we have a coherent model of the situation in our heads. The testers have to collect
and review the information, determine what’s relevant and sift out what’s not, and
decide what to question and where to probe further. Just like in a real test project.

The Exercises

To get the full value from this book, do the exercises. Because the questions you will be
asked to address are not that easy, there is a temptation to disregard them both here
and on a real-life project and “forge ahead” regardless. Full speed ahead -- damn the
torpedoes! A great idea – until we hit a torpedo. These case studies come with their
share of torpedoes. Though we do not want to become paralyzed in indecision, it is not
a good idea to skip the questions in the exercises. If we do not think them through at the
beginning of a testing project, sooner or later we will be forced to return and reconsider
them, and then perhaps will have to painfully change the direction of the project.

I have designed this case study with the intent that you will work through the series of
exercises in sequence, not skip them or only read their suggested answers.
Nevertheless, each exercise is designed to stand alone if it is not possible for you to first
complete the preceding exercises. If you do bypass the predecessor exercises, I
recommend that you review their suggested answers before continuing. (The suggested
answers are in not in this document but are Part 2 of the case study.)

You can do the exercises individually or with a small team, where you compare your
thoughts with peers’. Some exercises involve group discussion and thus are not suitable
for individuals working alone. If you are working through the case study by yourself,
simply skip these team exercises.

The Suggested Answers

A powerful way to learn is to review and critique a suggested answer after you have
developed, or tried to develop, your own. We call them suggested answers but not
model answers or official answers, because often there is no one answer that we can
agree is the best or only answer.

The answers are physically separated from the exercises, to help manage the
temptation to peek ahead. Peeking at the answer is OK if you become stuck on a
question, but if overdone it short-circuits the concept of self-discovery, your learning-by-
doing. My intention is that you will do each exercise in turn, as presented in this book
(Part 1), then review and critique the answer in Part 2 before returning to Part 1 for the
next exercise. As mentioned earlier, Part 2 does not contain a full set of answers to the

Introduction to the Case Study

 Copyright © 2005 Collard & Company

 Case Study 1.22

exercises.

Sequence of the Steps in the Test Methodology (and thus the Exercises)

I have presented the exercises as a one-way sequence of steps, such as: 1. gather data
about a problem; 2. analyze data; 3. formulate solution; 4. implement solution. The
world is usually not that simple.

On the job, you probably will not follow these steps in the presented sequence as if they
are carved in stone, especially when a problem is complex. Instead, adapt the
methodology to your situation, iterate, add or omit steps, parallel some activities and
loop back to re-visit earlier steps, as appropriate.

Exercise Options

You have three series of exercises to choose from in this book, either (a) the exercises
accompanying the concise case study, numbered Exercise 1.1 through 1.14 which are
quicker and easier to do, (b) the exercises for the full version of the case study,
numbered 2.1 through 2.17 which are richer but require more effort, and (c), as a
compromise, an abbreviated set of the exercises for the full version, where you get to
work with the more realistic and challenging case study, but primarily review the
suggested answers rather than developing your own answers.

Time Required for the Exercises

I have provided an estimate of the time for you to allow for each exercise. These
estimates are guidelines: some people complete an exercise in half of the estimated
time while others take double the time. This is not a race. People who zoom through the
exercises may fail to see the nuances, and deliver answers which are not well thought
through. Give the exercises enough time to adequately absorb their lessons.

The total time you will require to do all the Part 1 exercises for the concise version of the
case study is approximately 8 to 12 hours, and for the full version is approximately 32 to
40 hours.

 Copyright © 2005 Collard & Company

 Case Study 1.23

I. THE CONCISE VERSION OF THE CASE STUDY

Exercise 1.1: Reviewing the Performance Testing Objectives

Objectives

Your purpose in this exercise is to understand the business context of a typical
performance testing situation, and critique the testing objectives.

Instructions

Read the background to the case study in the attached Description of the Situation,
Section A. Based on this background, answer the questions below. Each answer need
be no more than a few lines long. Note that we are not looking for polished and detailed
answers at this time, just an initial sketch of your thoughts, ready for discussion with the
others in the class.

Questions to Address

(1.1.1) What is the justification for this performance testing project?

(1.1.2) Is a performance goal the same thing as a performance test objective? (This is
similar to the question, in functional testing: Is a system requirement the same thing as
a test case?)

(1.1.3) Are the stated performance goals (a) relevant and significant to the business,
and (b) testable (i.e., measurable and objective)?

(1.1.4) Are the stated performance testing objectives appropriate, and sufficient to guide
the testing project?

Description of the Situation, Section A: The Business Context

Background

The PO system we have been discussing is part of an ordering system for our firm,
Testing Little Books (TLB), a book club which specializes in testing and quality
assurance books. “Little books” is the firm’s name for its line of proprietary pocket

 Copyright © 2005 Collard & Company

 Case Study 1.24

books, which provide helpful hints and checklists for various types of testing such as
security controls testing, database integrity testing and real-time embedded device
testing.

The business has grown from a part-time, spare-bedroom operation to a staff of twelve
full-time people, and needs a new system to support its business. TLB is building a new
system for processing orders and shipping books, which will include a new web site and
an intranet connecting the staff members. The intranet will be implemented through a
combination of wired and wireless local area networks (LANs).

Main Features of the System

The new system will handle the following activities: ordering books, answering queries
on the status of orders, book searches, printing catalogs for mailing, and e-mail
broadcasting of special offers and promotions. Customers can perform these activities
themselves directly via the web site, or can telephone or send mail. Using client
workstations connected through the intranet, the book club staff members process
these phoned-in or mailed-in orders, requests for refunds, etc.

TLB also sells books from publishers other than itself, hence the need for the PO
system as described earlier by the use cases. The new system has been designed to
accommodate modifications to support the sales of non-TLB books, and the book
catalog in the system database lists a full inventory of books on testing and related
topics. For the foreseeable future, the transaction volume for ordering books from
publishers is small enough to ignore in this performance test project.

TLB outsources the printing and shipping of its books, so the detailed transactions
needed for these functions are not included in the new system. However, the new
system will send shipping instructions to the outsourcers.

Sharing of Resources

Another application, the billing system, will share the same infrastructure with the new
ordering system. It generates invoices for the books ordered and tracks the payment
status. The event that triggers generating an invoice is a shipment of books, which in
turn is triggered by one or more orders.

A third application that shares the infrastructure is e-mail.

Occasional Activities

 Copyright © 2005 Collard & Company

 Case Study 1.25

Other occasional activities which can place significant demands on the system
resources include:

• Printing of paper catalogs for mailing (though 80% of catalogs are distributed
electronically).

• Data mining and ad hoc report generation for senior managers, e.g., analyses of

buying trends.

• Transmission of video and audio clips via the web site. These include brief
interviews with authors and gurus in the software testing field, plus small
complimentary tutorials.

Your Role

Your job is to check the performance of this new system before it goes live, in order to
avoid problems in live operation, and your immediate assignment is to plan for this test.

Business Goals

The overall TLB business goals are to grow revenues, increase market share, improve
profitability, and increase customer satisfaction.

Success Criteria

Providing acceptable system performance, availability, robustness and data integrity are
considered critical to the success of this business. Without superior performance, for
example, the senior managers believe the business will become marginalized. They are
not willing to tolerate surprises when the system goes live that may imperil customer
satisfaction and goodwill.

Performance Goals

In support of the business goals and success criteria, the system should meet these
performance goals:

a) Response times must be competitive or beat the competition.

b) The system must be able to process normal work loads, heavy loads and the

occasional surge in demand.

 Copyright © 2005 Collard & Company

 Case Study 1.26

c) The system must be scalable, so it can be upgraded as necessary to
accommodate growth for the first three years without undue delay and expense.
(Any system can be upgraded if cost is not a factor.)

Testing Objectives

The primary objective is to provide a reasonable confidence that the performance goals
will be met in the live operation, or to indicate what needs to be fixed in order to meet
these goals.

Exercise 1.2: Modeling the Architecture

Objectives

The system architecture is the blueprint for the infrastructure used in the live operation.
The purpose of this exercise is to gain an understanding of how the system works by
mapping its architecture into a diagram. This understanding later can help us to
determine the test loads to run, the access points where we observe the system’s
behavior, the metrics to collect during these observations, and the target values and
acceptable thresholds for the metrics.

Instructions

(1.2.1) Can we define system performance goals independently of the technical
environment, specifically (a) how the system is implemented and (b) what environment
and infrastructure it uses?

• By analogy, consider a situation where we need to test the performance of a
delivery service that specializes in jewelry and other small precious items.

• To assess its performance, do we need to know if this delivery service uses

carrier pigeons or aircraft?

• For what measures of performance, if any, is the service’s use of carrier pigeons
vs. aircraft irrelevant?

• For what other measures of performance, if any, is the service’s use of carrier

pigeons vs. aircraft relevant?

• Hint: ranking the efficiency of competing services, based on the jet fuel

 Copyright © 2005 Collard & Company

 Case Study 1.27

consumed per package delivered, will place the pigeon-based services at the top
of the list. Does this finding make sense?

(1.2.2) Read the description of the system architecture (see the Description of the
Situation, Section B).

(1.2.3) Diagram a one-page model of the system architecture. For inspiration, see the
attached examples of system architectures. In your diagram, show the major devices
used by the system (such as servers, clients and routers). These terms are defined in
the glossary. Do not be too concerned with adhering to a standard set of notations and
graphic conventions, e.g., using a special symbol to represent each server. A simple
rectangular box will do, provided it is clearly labeled. Link the devices together in the
diagram to reflect the ways they will be connected in the live operation.

Description of the Situation, Section B: The System Architecture

Overview of the Major Components

The new system runs on two servers with mutual hot back-up and load balancing
capabilities. Each connects to a database, a wired local area network (LAN), a gateway
that provides Internet access, and through a router to a bank of printers. One of the
servers also connects to a wireless router which drives a wireless LAN (WLAN). As
mentioned earlier, the same servers also host the web site, handle e-mail, run the billing
system and run security software such as firewalls.

Each server contains 4GB of semiconductor memory, a 200 GB hard drive, and a
processor with a rated speed of 2 GHz.

The Database

The database contains data about books in inventory, customers, orders, shipments
and bills. This database has files on approximately 5,000 customers. At any time, the
database contains about 1,000 open order records and 25,000 book inventory records.

Each server has a full copy of the database. The copies are kept synchronized by
concurrent dual updates to both databases, and by a continual flow of monitoring
transactions by the database management software (DBMS) to cross-check for
consistency.

A database back-up is performed once nightly. It is expected to be completed in 15
minutes, with back-up transactions for 5,000 customer, 1,000 open order and 25,000

 Copyright © 2005 Collard & Company

 Case Study 1.28

book inventory records within that period. The back-up is scheduled at a time when
other demands are expected to be light. The database back-up traffic does not traverse
the LANs; the back-up device is directly wired so that it bypasses the LANs. However,
the back-up device is not stand-alone; a server must run the back-up job. During
database back-ups, response times should not increase by more than 33% of their
average values when no back-up is being run.

The Intranet and LANs

Ten of the client workstations and both servers will be connected by a wired Ethernet
LAN, rated at 10 Mbps. No LAN router or switch is needed for such a small network; the
LAN processing is handled by network interface cards (NICs) inserted into slots in the
backs of the servers. There is a NIC inserted into every device connected to the LANs.

The voice phone traffic also traverses the wired LAN, because it connects the external
phone services (VoIP provided by public telecom carriers), via a voice switch to the
internal staffers in what is grandly named the call center. Peripheral devices such as
printers, scanners and fax machines also connect to this wired LAN.

The remaining five client workstations are located in an office that cannot be wired
without incurring the wrath of the landlord. This LAN connects these clients to a server
via a wireless router, and to a few more peripheral devices. (There is only one wireless
router, because the functions supported are not critical and a redundant link has been
deemed unnecessary.) The wireless Ethernet LAN has a theoretical capacity of 11
Mbps (as per the original IEEE 802.3 standard), but to simplify the calculations we will
assume 10 Mbps.

The Web Site

The web site is connected via dual gateways to a local Internet service provider (ISP).
Each gateway connects from one of the two servers to the ISP, using a T1 line with a
rated capacity of 1.544 Mbps. (There are two T1 lines in all.)

The Voice Phone Service

The organization’s voice telephone service is separately wired with its own self-
contained switch and router. The telephone system will access the new system’s
database, to look up the customer profile matching the phone number on each incoming
phone call.

The Support Software

 Copyright © 2005 Collard & Company

 Case Study 1.29

The decision has been made to use Windows XP on both the servers and the clients,
and the database management software used by the system will be SQL Server.

Exercise 1.3: Specifying the Performance Requirements

Objectives

The purpose of this exercise is to assess the testability of the existing performance
goals for the new system, and if necessary develop testable performance requirements.

Instructions

(1.3.1) Review this example of a performance specification or requirement:

Performance Requirement Name: Database Back-Up

Transaction or Event Type
(Represented in the Load Mix)

Throughput Load Volumes
(Transactions per Minute)

Delivery Time or Response
Time Goals

1. Customer record back-up 333 15 minutes or less to back up
5,000 customer records; for 90%
or more of the back-ups

2. Order record and book
inventory record back-up

175 15 minutes or less to back up
1,000 order records and 25,000
book inventory records; for 90%
or more of the back-ups

3. Request page of the catalog 7 4 seconds during the database
back-up (i.e., 33% more than the
normal goal of 3 seconds) or less,
from the time when the request is
submitted to when the requested
page is displayed; 90% of the
time or more

4. Conduct book search 7 9.3 seconds during the database
back-up (i.e., 33% more than 7
seconds) or less, from the time
when the search query is
submitted to when the response is
displayed; 90% of the time or
more

 Copyright © 2005 Collard & Company

 Case Study 1.30

5. Place a new book order 7 9.3 seconds or less, from the time
when the order is submitted to
when the order acknowledgement
or the error response is received;
90% of the time or more

6. Request home page of the
book club

7 4 seconds or less, as measured at
the visitors’ workstations; 90% of
the time or more

7. Other background noise
(concurrent unrelated activity)

20 Response time goals that have
been set for the billing and e-mail
systems

Other Related Requirements

Aspects to Measure

Acceptable Thresholds

8. Resource utilization Main processors, memory and
network links

Utilization cannot exceed 65%,
reserve capacity is not to fall
below 35%.

9. Error rate thresholds Transactions listed above Error rates not to exceed 1% for
each system feature or transaction
type

10. Availability Transactions listed above All major system features
available 99% of the time or
more, 24 x 365, and with error
rates that do not exceed the error
rate thresholds

 (*) Each test case is defined to contain one transaction as an input stimulus and the related set of outcomes for that
stimulus. All attempts to execute a test case are counted. Transactions are counted as errors if they are not
completed because the system is unavailable, and are included in the error rate computation.

(1.3.2) For what situations should we set performance goals? We cannot define a
performance requirement for every possible use of the system, so we need to focus on
the most significant or the most representative.

a. List three situations where you believe performance will be critical or at least
significant.

b. Describe a typical scenario which could serve as the bellwether indicator of the

overall system performance. (In the stock market, a bellwether is a stock whose
performance is indicative of the overall market condition and direction.)

 Copyright © 2005 Collard & Company

 Case Study 1.31

(1.3.3) Develop the performance requirement for the situation you believe is the most
critical one.

Exercise 1.4: Performing the Initial Impact Assessment

Objectives

The purpose of this exercise is to perform an initial assessment (IIA) of the system’s
likely performance issues, and decide whether a formal performance project is justified
for the new system. The IIA is intended to be fairly quick and straightforward, and
provide not exact but “good enough for now” answers.

We will limit the scope of the IIA to examining the wired LAN only, to simplify this
exercise. (For the rest of this exercise, the term LAN means the wired network but not
the wireless LAN.)

Normally, on the job we’d first ascertain whether the LAN is the best place to begin
analysis. We want to begin with the system aspect or component that is easier to
analyze and also may likely be a bottleneck. We’d also probably look at more than one
aspect on the job, i.e., we might analyze the web services and the database as well as
the LAN.

You will need to do some computations in this exercise; you may need a pocket
calculator but not a supercomputer. And you do not need a mathematician, statistician
or network engineer.

Instructions

(1.4.1) In order to perform the initial assessment (IIA) of the system, first:

a. Review the attached information:
i. The LAN models and worksheets.
ii. The simplifying assumptions. Feel free to use these assumptions or

replace them with your own. In that case, write them down.
iii. The work load volumes to use in this calculation. (See the section entitled:

“Levels of Demand – Peak Load”.)

b. Analyze what we have available to work with (the usefulness and reliability of this
information), before jumping into calculating the utilization of the network. The
next three questions (1.4.2 through 1.4.4) address these issues. Only after they

 Copyright © 2005 Collard & Company

 Case Study 1.32

have been addressed will we get into the calculations.

(1.4.2) How trustworthy will be the results of the calculations, given some uncertainty
about the quality of the data provided?

a. In most situations, little or no data can be known with perfect accuracy. We need
to factor uncertainty into our calculations. The table entitled: “Levels of Demand –
Peak Load” provides estimates of the confidence we have in the input data.

a. Establish the target accuracy that is desired for your calculations.

o These targets generally are expressed in terms like: “The real data value
lies within 15% of the measured or calculated data value”.

o A little later, we will add probabilities and levels of confidence to these
expressions, but for simplicity we will ignore these refinements for now.

o Be aware that a 1% improvement in the accuracy and precision of the
computed answers can sometimes double the analytical time and effort.

b. To meet the target accuracy, how clean (i.e., how accurate and precise) does the

input data need to be? This input data drives the calculations, for example, here
it includes the transaction sizes (lengths) and volumes (occurrences). (We will re-
visit this question below.)

c. How can we tell if the target accuracy has been attained or not?

d. Review the levels of confidence of the data provided in the section entitled:

“Levels of Demand – Peak Load”. The levels of confidence range from low to
high and are defined as follows:

o Very Lo: there is a 50% or better chance that the real data value does not
lie within 30% of the measured or reported data value.

o Lo: there is a 50% or better chance that the real data lies within 15% of
the measured or reported data value.

o Mid: there is a 90% or better chance that the real data value lies within
15% of the measured or reported data value.

o Hi: there is a 90% or better chance that the real data value lies within 5%
of the measured or reported data value.

o Very Hi: there is a 95% or better chance that the real data value lies within
5% of the measured or reported data value.

e. Given the levels of confidence expressed in the input data (transaction volume

and length data), what is the likelihood that the real total network utilization will
exceed the calculated total by more than 15%? More than 30%?

 Copyright © 2005 Collard & Company

 Case Study 1.33

(1.4.3) Is it more appropriate here to use the mean (average) size or length of the LAN
transactions, and not the median or the mode?

a. The terms mean, mode and median are defined here and in more depth in the
glossary.

i) The median by definition is the midpoint length.
a. Above which 50% of the transactions are longer.
b. And below which 50% are shorter.

ii) The mode is the most common or most frequently occurring length.
iii) The mean can provide a basis to calculate the total traffic volume in

bytes during a given time period. We might choose to:
i. Multiply the mean length of each type of transaction by the count of

that type of transaction during the period.
ii. Add the traffic volume for each type of transaction to get the total.

b. Do we care? Will the end conclusion of this exercise change if we use the mean

length instead of the median or the mode?

c. How much is the amount of inaccuracy or imprecision introduced by the

assumption that we can use one representative transaction size or length,
regardless of whether it is the mean, median or mode? Let’s say we developed a
software simulation of the LAN traffic, where the size of each individual
transaction could vary, but where either the mean, median or mode (whichever
we pick as most relevant) is the same as here? The simulation is more realistic,
but about how much is it likely to differ?

d. We saw earlier that the transaction volumes also vary from time period to time

period? Is the amount of inaccuracy introduced by using one representative
transaction volume likely to be larger or smaller than from using one
representative transaction size? Why? (Hint: consider the mix of fixed-length and
variable-length transactions.)

(1.4.4) Can we apply the so-called 80% - 20% rule (Pareto’s principle) in this analysis,
or an 85% - 15% rule?

a. Pareto’s principle applies in many situations. For example, 20% of the test

outsource vendors might have 80% of the market share. Here, it claims that 20%
of the transactions or less account for 80% or more of the load.

b. As the following table lists 7 types of transactions, any one type accounts for

 Copyright © 2005 Collard & Company

 Case Study 1.34

15% of the list (1 in 7).

c. Assume the accuracy required in load calculations for the initial impact
assessment does not have to be better than within plus or minus 15%.

d. Can we ignore the bottom 85% (6 in 7) of the transaction types in this IIA, and

still deliver a sufficiently accurate result from the calculation?

e. Better yet – do we more accurately represent the situation if we simply add

another 15% to the load calculated from only the predominant transactions?

(1.1.5) Estimate the utilization of the LAN during periods of heavy load.

a. Calculate the percentage of the LAN’s available capacity (10 Mbps) that will
be used under heavy load.

b. Is this greater than the stated maximum threshold (35% utilization)?

(1.1.6) Are the transaction demands likely to have a material impact on the LAN, to the
degree that the performance goals are unlikely to be met?

(1.4.7) If so, should the IIA recommend that the organization undertake a performance
testing project? (Usually impact assessments have a broader scope and examine all
areas where the impact is likely to be non-trivial, not just the LAN.)

(1.4.8) Was focusing on analyzing the LAN first in this IIA a good idea or a bad one?
Why?

• Do we have an effective model of a LAN to use? (I.e., one that is realistic,
reasonably accurate, and does not require onerous data gathering, assumption-
making or computations.)

• Is the LAN likely to be a major constraint? Can we quickly and roughly gauge

whether the main bottlenecks, if any exist for the work loads levels being used in
testing, are likely to occur in other areas of the system, such as the dual T1 lines
for external access?

• Are the time, cost and risk of upgrading the LAN (to 100 or 1,000 Mbps), so low

that we should simply bypass this analysis, and invest what we save (by not
performing the analysis) in upgrading the LAN?

 Copyright © 2005 Collard & Company

 Case Study 1.35

(1.4.9) How much did the simplifying assumptions compromise the outcome of the IIA?
In other words, what is the risk that these assumptions have led us to the wrong
conclusion?

Levels of Demand – Peak Load

Under peak load the LAN transaction volumes are:

Transaction or
Event Type
(Represented in
the Load Mix)

Transaction
Priority

Throughput
Load Volumes
(Transactions per
Minute)

Length –
Mean
(Kilobytes)

Length –
Median
(Kilobytes
)

Length –
Mode
(Kilobytes
)

Level of
Confidence
in the Data

1. E-mail
notification of
the new
catalog’s
availability

Lo 100 50 50 50 Hi

2. Request to
download the
table of
contents page
of the catalog.

Hi 20 50 50 50 Hi

3. Request
detail page of
the catalog

Mod 20 30 50 20 Mod

4. Conduct
book search

Mod 20 500 250 100 Lo

5. Place a new
book order

Hi 20 30 50 20 Mod

6. Request
home page of
the book club

Hi 20 25 25 25 Hi

7. Other
background
noise
(concurrent
unrelated
activity)

Mod 20 50 100 35 Lo

 Copyright © 2005 Collard & Company

 Case Study 1.36

Assumptions

We typically need to make some simplifying assumptions in order to perform a
reasonably quick assessment. In this situation, the assumptions are:

a) For now, we can ignore the question of whether the new system is able to meet
its response time requirements (such as responding to internal workstation
queries within 2 seconds, 90% of the time or more), and focus only on whether it
can accommodate the transaction throughput.

b) All the traffic listed in the table is carried on the wired LAN, and none traverses

the wireless LAN.

c) We will consider only the capacity of the wired LAN to handle the throughput, not

other parts or components of the system such as the servers. We will assume
that the LAN will reach its maximum capacity before a server reaches its own
limits – if a bottleneck occurs before the load on the system reaches its peak, it
will happen in the LAN.

d) Each interaction with the new ordering system normally includes both an input

and a response. Since we expect an input to be followed fairly rapidly by a
response, if the traffic volumes are low we can calculate the total traffic load on
the network for each transaction by simply adding together the lengths of the
input message and the response message for that transaction. (This effectively
gives us one combined transaction instead of the pair.)

e) The impact of the other systems that share the same infrastructure, especially

the billing and e-mail systems, is likely to be significant and thus cannot be
ignored.

f) Under normal working conditions, the LAN utilization should not exceed 35%. In

other words, the work load on the LAN should not exceed 35% of the theoretical
maximum capacity of the LAN, which is 10 Mbps (megabits per second), when
the usage is measured over any one-second interval. (When the utilization
exceeds 35%, message collisions increase, the likelihood of reliable delivery
falls, and transmission times become unacceptably slow.)

INTRODUCTION TO LAN MODELS

These models are intended to provide a quick and easy way to estimate LAN utilization
reasonably accurately, for capacity planning, bottleneck identification and assessing the

 Copyright © 2005 Collard & Company

 Case Study 1.37

need for performance testing. You do not need to be a LAN administrator or network
engineer to use these models. However, if terms like frame, collision and backbone are
unfamiliar to you, and you would like to understand the underlying technology and the
assumptions used, please read the appended section on the CD entitled: ”LAN Basics”.

LAN Model for Low Traffic

If the LAN bandwidth utilization is likely to be light (i.e., fall below 10%), ignore frame
collisions and frame overheads and use this model. This greatly simplifies the LAN
model, and the inaccuracy introduced into the calculated utilization is unlikely to exceed
5%.

However, if the calculated utilization from this model exceeds 10%, we cannot ignore
collisions. We must throw away the results and re-do the calculation, using a more
sophisticated model for moderate to high traffic (see later).

Step 1:

Determine the appropriate time period during which we should analyze the behavior of
the LAN. Assume that this time period is one second. (Later, we will address how to
determine if this time duration is too long, too short or about right. For now, accept that
one second will do.)

Step 2:
a. Select the work load scenario to be analyzed and label it with an unambiguous name.
Specify whether the scenario is one with typical demand or peak demand.

b. Take an inventory of the LAN transactions, and list by name the types of transactions
(or frames or data packets) carried by the LAN, together with the number of times each
one occurs within the time period and the size of each type of transaction. Use the
attached worksheet or develop your own worksheet if you prefer.

c. Determine and state whether each type of transaction is fixed-length or variable-
length. If the size varies for a particular transaction, document the mean (average), the
minimum and maximum possible sizes. If known, also capture the median and mode,
the standard deviation, and the nature of the distribution of transaction sizes.) Compile
this information in the “List of Transaction Sizes” table in the attached worksheet.

d. If the transactions are fixed in length and the variations in volumes are known for
multiple similar time periods, use the table entitled “List of Transaction Volumes” in the
worksheet, not the one entitled: “List of Transaction Sizes”.

 Copyright © 2005 Collard & Company

 Case Study 1.38

e. Often, the top 10% of the types of transactions account for 90% or more of the total
traffic volume. (This is a variation of Pareto’s principle.) Check if this principle applies in
the situation at hand, i.e., a small number of transaction types dominate. If the principle
holds, ignore the bottom 90% of the transaction types – we do not need highly precise
answers.

f. Make sure your transaction sizes are consistent: do not mix bits and bytes or bytes
and kilobytes (KB) without converting the sizes to a common base (1 byte = 8 bits, 1
kilobyte = 1,000 bytes). And use the same common time period when counting how
many transactions occur. One second is generally an adequate time period to work
with. State the dimensions and units in which your data is expressed (e.g., KB per
second).

Step 3:

Calculate the LAN demand (and thus the expected throughput), by summing the sizes
of all the transactions that the LAN needs to carry, for either a typical period of activity
or for one with peak demand. Add 4% to the total size of all the transactions to allow for
Ethernet overhead.

Step 4:

Determine the theoretical capacity of the LAN you are working with. For traditional
Ethernet it is 10 Mbps or 10,000,000 bits per second, while gigabit Ethernet is 100 times
faster. Convert this capacity to the same dimensions used in Step 1 above (e.g., KB per
second, which is derived by dividing the bits-per-second capacity number by 8,000).

Step 5:

Calculate the LAN backbone utilization by dividing the demand from Step 1 by the
capacity from Step 2. Multiply the answer by 100 to express it as a percentage.

Step 6:

Run a dimensional analysis check on the resulting LAN utilization from the calculation.

Step 7:

If your calculated utilization is less than 10%, the calculation is done and acceptable.

 Copyright © 2005 Collard & Company

 Case Study 1.39

If instead your calculated utilization exceeds 10%, abandon it – it is too inaccurate. Re-
work your calculations using the model for moderate to high traffic below, which
accounts for collisions on the backbone.

LAN Model for Moderate to High Traffic

This model is more accurate and more broadly applicable than the previous one, but is
more complicated are thus harder to apply correctly. We need to calculate two items: (a)
the probability of a collision, and (b) the time lost in cleaning up after the collision,
including re-transmission.

Step 1:

Assume that the appropriate time period for which we should analyze the behavior of
the LAN is one second, as in Step 1 of the previous model for a LAN with low traffic.

Step 2:

If you have not already done so, take an inventory of the LAN transactions, as
described in Step 2 of the previous model for a LAN with low traffic.

Step 3:

If you have not already done so, calculate the LAN demand by summing the sizes (in
the same units of measure) of all the transactions that the LAN needs to carry, for either
a typical time period or one with peak demand. Follow the same procedure as described
previously in Step 3 for the low traffic LAN. Make sure you are working in consistent
dimensions or units of measure, and state those dimensions (e.g. KB per second).
Remember to add 4% to the total to allow for overhead.

Step 4:

If you have not already done so, determine the theoretical capacity of the LAN you are
working with, as in Step 4 of the previous model.

Step 5:

Calculate the number of frames sent by all nodes within the same one-second time
period. Assume the average frame has a 1,000-byte payload. Thus the frame count is
numerically equal to the total demand from Step 3 immediately above, divided by the
typical frame size (1,000 bytes).

 Copyright © 2005 Collard & Company

 Case Study 1.40

Step 6:

Calculate the probability that the LAN is in a state where it is possible for a collision to
occur.

a. Collisions can only occur at the beginning of each frame’s transmission,
and only for a brief period equal to the so-called propagation delay.

b. The delay is the elapsed time needed for any bit of information to travel
from one node in the network to another. It varies and is influenced by
many complex factors; for simplicity we will assume the propagation delay
has a fixed duration.

c. Assume the propagation delay is equal to 100 microseconds, to simplify
the arithmetic.

d. This probability of the network being in a collision-possible or collision-
ready state is approximately equal to:

i. [The number of frames sent by all nodes during the time period]
multiplied by

ii. [the average propagation delay] divided by
iii. [the duration of the time period].

Step 7:

Calculate the likely number of actual collisions within the time period.

a. A collision will happen only if two conditions are met: the network is in a collision-
possible state, a party on the network attempts to transmit a frame while the
network is in that state.

b. The most likely number of collisions within a time interval is:

Number of frames sent per node within the time period (i.e., per second)

x Number of connected and actively sending nodes
x The probability of the network being in a collision-possible state

c. This equals:

Number of frames sent by all nodes within the time period

x Percentage of the time period when collisions can occur

d. Thus we do not need to know the number of connected, active nodes, including
the computers, printers and other peripheral devices on the LAN.

 Copyright © 2005 Collard & Company

 Case Study 1.41

e. In addition, the percentage of the time period when collisions can occur equals

the probability of being in a collision-possible state, which we calculated in Step 6
above.

Step 8:

Calculate the loss per collision. To simplify the arithmetic, assume that:

a) The number of frames discarded per collision is exactly 2. (The actual number is
more like 2.01, because not all collisions involve only 2 frames: about 1% of
collisions are three-way.)

b) The average frame payload is 1,000 bytes.

c) There is no overhead on a frame (it actually is 38 bytes).

d) The wait time to discard corrupted frames, clear the backbone and re-transmit

the discarded frames is equal to the time needed to transmit 2 frames (2,000
bytes or 16,000 bits), or 16 milliseconds at a LAN speed of 10 Mbps.

Express this collision loss not in terms of the interruption time, but in terms of the data
that could have been transmitted during the interruption of service. (It is exactly equal to
2,000 bytes per collision).

Add 5% to the calculated answer, to adjust for the simplifications. The adjusted loss is
2,100 bytes per collision.

Step 9:

Calculate the total loss for all collisions within the one-second time period, by multiplying
the likely number of collisions from Step 7 by the loss per collision from Step 8 (2,100
bytes or 16,800 bits).

Step 10:

Calculate the total demand on the LAN, by adding the collision losses from Step 8 to the
original demand from Step 3.

Step 11:

 Copyright © 2005 Collard & Company

 Case Study 1.42

Calculate the LAN backbone utilization by dividing the total demand from Step 10 by the
capacity from Step 4. Multiply the answer by 100 to express it as a percentage.

Step 12:

Run a dimensional analysis check on the resulting LAN utilization from the calculation.

 Copyright © 2005 Collard & Company

 Case Study 1.43

LAN UTILIZATION WORKSHEET

Author: _____________________

Date: ___________ Version #: ___________

BACKGROUND

Name of Scenario: __

Description of Scenario: __

__

Time Duration being Analyzed: ___________

Units of Measure used for Volumes and Sizes: ___________

Theoretical LAN Capacity: ___________

Type of Load or Demand: Average ____ Peak ____

RESULTS

LAN Utilization = Total Volume / Theoretical Capacity

 = ___________ x ___________ x 100%

 = ___________ %

(See the attached tables for the details used in calculating the Total Volume.)

Dimensional Analysis of the LAN Utilization Calculation

 Acknowledgement that size units of measure are consistent: ____

 Acknowledgement that time periods and time units of measure

are consistent: ____

 Acknowledgement that dimensions are consistent: ____

 Copyright © 2005 Collard & Company

 Case Study 1.44

 Copyright © 2005 Collard & Company

 Case Study 1.45

List of Transaction Sizes:

Transaction
Name

Variable
or Fixed
Length

Size
Min.

Size
Max.

Size
Mean

Size
Median

Size
Mode

Units of
Measure
(e.g.,
bytes)

Volume
of
Trans.
in Time
Period

Size x
Volume

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

 Copyright © 2005 Collard & Company

 Case Study 1.46

Total Volume xxx xxx xxx xxx xxx xxx xxx xxx

Total Volume
with
Overhead

xxx xxx xxx xxx xxx xxx xxx xxx

 Copyright © 2005 Collard & Company

 Case Study 1.47

LAN UTILIZATION WORKSHEET
List of Transaction Volumes:

 Transaction

Name
Vol.
Min.

Vol.
Max.

Vol.
Mean

Vol.
Median

Vol.
Mode

Units of
Measure

Size Size x
Volume

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

 Copyright © 2005 Collard & Company

 Case Study 1.48

Total
Volume

xxx xxx xxx xxx xxx xxx xxx xxx

Total
Volume
with
Overhead

xxx xxx xxx xxx xxx xxx xxx xxx

 Copyright © 2005 Collard & Company

 Case Study 1.49

Exercise 1.5: Deciding Where to Observe and What to Monitor

Objectives

The purpose of this exercise is to decide which behaviors of the system to observe (i.e.,
which performance characteristics to track during testing), where in the system (e.g., at
which access points), and what data to collect.

Instructions

(1.5.1) At what points in this architecture do you recommend that we monitor the
system’s performance during testing, in order to test the system’s ability to meet the
performance requirement described in exercise 1.3?

(1.5.2) What type of data do you recommend that we collect at each major monitoring
point (e.g., end-to-end response time, throughput, bandwidth utilization, processor
utilization)? For which transactions should data be collected?

(1.5.3) Is this data likely to be readily available (e.g., in server logs), or will we need to
act? These actions can be invasive or not, and include loading data capture tools,
inserting hardware probes (this is less common) or having people (most likely testers)
observe and manually record events.

Exercise 1.6: Selecting the Methods of Testing

Objectives

The purpose of this exercise is to determine what behaviors to monitor and what
characteristics to measure during testing.

Instructions

(1.6.1) Assess the usefulness of each of the following test methods for this project, and
also the relative effort needed to apply that method. In the table below, rank the
usefulness and the effort on a scale of low, moderate or high. The methods are defined
in the glossary on the CD.

Test or Measurement Method Usefulness or Likely Effort
 Value for this to Apply in

 Copyright © 2005 Collard & Company

 Case Study 1.50

 Project this Situation

1.0 Testing which is driven by what
we want to measure.

 1.1 Response time measurement ____________ ____________

 1.2 Throughput measurement ____________ ____________

 1.3 Availability measurement ____________ ____________

 1.4 Measurement of resource

utilization ____________ ____________

1.4.1 Processor ____________ ____________

1.4.2 Main memory ____________ ____________

1.4.3 Hard drive capacity ____________ ____________

1.4.4 Network bandwidth ____________ ____________

1.4.5 Lengths of queues ____________ ____________

1.5 Error rates

1.5.1 Inaccurate ____________ ____________
responses to application queries

1.5.2 Buffer or queue
 overflows

1.5.3 Page faults ____________ ____________

2.0 Testing which is based on the source
or type of the load.

2.1 Usage-based testing ____________ ____________

2.2 Standard benchmark testing ____________ ____________

 Copyright © 2005 Collard & Company

 Case Study 1.51

3.0 Testing which seeks to stress the system
or find its limits.

3.1 Hot spot testing ____________ ____________

3.2 Spike and bounce testing ____________ ____________

3.3 Breakpoint testing ____________ ____________

3.4 Degraded mode of operation ____________ ____________
testing

4.0 Concurrency testing

4.1 Interaction / interference
testing ____________ ____________

5.0 Risk-based testing

 5.1 Risk assessment ____________ ____________

5.2 Bad day testing ____________ ____________

Exercise 1.7: Determining the Test Focus and Coverage

This exercise expands on the ideas discussed in the previous exercise, and places risk
at the center of the test selection process.

Instructions

Perform a risk assessment in order to identify where to focus the deep, intense testing
and where else to skim and test lightly, in order to conserve resources for the areas
which require the deep testing. You can assess and pinpoint the risks by answering the
following series of questions. You may do this exercise individually or in a team
brainstorming session.

Questions to Address – Load Demand Risks

(1.7.1) What circumstances are likely to cause heavy demand on the system from
external users (i.e., remote visitors to the web site, who are not book club employees)?

 Copyright © 2005 Collard & Company

 Case Study 1.52

(1.7.2) Under what circumstances is heavy internal demand likely (i.e., by the book club
employees)?

(1.7.3) What uses of the system are likely to consume a high level of system resources
per event, regardless of how frequently the event occurs? The resource consumption
should be significant for each event, not high in aggregate simply because the event
happens frequently and thus the total number of events is high.

(1.7.4) What system uses are timing-critical or timing-sensitive?

(1.7.5) What uses are most popular, i.e., they frequently happen?

(1.7.6) What uses are most conspicuous, i.e., have high visibility?

(1.7.7) Based on your understanding of the system architecture and support
infrastructure, where are the likely bottlenecks?

(1.7.8) What specifically is new or changed in the coming version of the system or its
support infrastructure? Areas which are new or modified are more likely to have
performance issues than areas which have already been running satisfactorily and have
not been touched. However, if most or all of the system is new, everything is at risk and
answering this question will not help.

(1.7.9) What has been your prior experience with other similar situations? Which
features or systems aspects typically have encountered performance problems? If you
have no experience with other similar systems, please skip this question.

(1.7.10) Are there any notably complex functions in the system, for example, in the area
of exception handling?

You are now about halfway through this exercise – time for a brief break to let your
brain cells cool off.

Questions to Address – Infrastructure and Design Risks

(1.7.11) Are there any areas in which new and immature technologies have been used,
or unknown and untried methodologies?

(1.7.12) Are there any other background applications which share the same
infrastructure and are expected to interfere or compete significantly for system
resources (e.g., shared servers)?

 Copyright © 2005 Collard & Company

 Case Study 1.53

(1.7.13) What is the architects’ and developers’ level of confidence in the system’s
adequacy? Do we know where in the system these people feel comfortable that
performance will not be an issue, and in which areas are they nervous? I am assuming
that the testers have access to the architects and designers – if not, this question and
the next one may be unanswerable and thus irrelevant.

(1.7.14) What are the architects’ and developers’ reputations for delivering systems
which fail to meet the performance goals, and their credibility in spotting potential
problems? Since these people usually understand the system internals better than
anyone else, their suggestions could be invaluable – but only if they know what they are
talking about.

(1.7.15) What can we learn from the behavior of the existing systems that are being
replaced, such as their work loads and performance characteristics? How can we apply
this information in testing the new system?

(1.7.16) What areas of the system operation, if they have inadequate performance,
most impact the bottom line (revenues and profits)?

(1.7.17) What combinations of the factors, which you identified by answering the
previous questions, deserve a high test priority? What activities are (a) likely to happen
concurrently, and (b) cause heavy load and stress on the systems?

(1.7.18) What areas of the system are low in risk and thus can be minimally tested for
performance without imprudently increasing liability, in order to conserve the test
resources for the areas which need heavy testing?

(1.7.19) In summary, considering the total picture, what areas should the performance
test focus on? Consolidate your answers to the prior questions in this exercise to form
an answer for this question, by completing a table like this:

 Copyright © 2005 Collard & Company

 Case Study 1.54

Area to be
Tested

Likelihood or
Probability of
Performance
Problems in
this Area

Likely Cost or
Consequences
of the
Performance
Problems

Exposure
(Combined
Importance of
Likelihood and
Consequences)

Relative
Ease of
Testing in
this Area

Test Priority
for this Area

Database
maintenance
(updates, re-
indexing, and
back-ups)

High (5),
because this is
a highly data-
dependent
system with a
data-centric
system
architecture.

High (5),
because the
database
performance
affects all parts
of the system
operation and is
highly visible.

High (5), as this
is based on the
combined effect
of the entries in
the two columns
to the left.

Moderate to
high (4), as
automated
test cases
already are
available, and
a tool is being
acquired to
run them.

High (5), as
this is based
on the
combined
effect of the
entries in the
two columns
to the left.

Denial of
service
(DOS) attack

Low (1),
because an
attack is
assumed to be
unlikely.

High (5),
because without
adequate DOS
controls an
attack will shut
the system
down.

Moderate (3) Moderate to
low (2),
because a
large test load
must be
generated
and delivered.

Moderate
(3)

Incoming
telephone
calls to the
call center,
after a
promotion

Moderate to
high (4), but
expected to
decline over
time as more
people switch to
directly ordering
via the Internet.

Moderate to high
(4), because
people are
sensitive to
phone delays.
Members will be
irritated and
business lost.
However, non-
telephone work
is not affected.

Moderate to high
(4)

Low (1),
because a
small army of
testers are
needed to
manually
place phone
calls, or
specialized,
expensive call
generators.

Moderate to
high (4)

Exercise 1.8: Calculating the Test Work Load

Objectives

The purpose of this exercise is to determine the mix of demands to place on the system
during testing.

 Copyright © 2005 Collard & Company

 Case Study 1.55

Instructions

Answer these questions, based on the following set of data in Section C, Volumetric
Assumptions

Questions to Address

A. TEST WORK LOAD VOLUMES

(1.8.1) How many web site visits or sessions are expected

a. per month?

 b. in a typical hour?

(1.8.2) Can the size of the daily peak demand fluctuate from day to day?

(1.8.3) Can the location (i.e., the time of day) of the daily peak fluctuate from day to
day?

(1.8.4) Should we test for the highest peak that can ever occur, or the most likely daily
peak (the mode) or the average peak (the mean)?

(1.8.5) Is the most likely peak in a typical day higher than the most likely peak in a
typical hour?

(1.8.6) How many web site visits or sessions are expected during the most likely peak
hour of a typical day? (Hint: use your answers from the prior questions, though this
carries the risk a ripple effect as errors cascade from answer to answer. Also look at the
listed assumptions.)

(1.8.7) Before you try calculating your answers to the next few questions, first sketch a
graph to help understand the nature of the traffic flow:

a) In this graph, set the horizontal or x axis to represent the time on the clock, with
the left edge of the graph being time zero and the right edge being one hour
later.

b) Set the vertical or y axis to indicate the amount of activity (e.g., the number of

concurrent sessions).

 Copyright © 2005 Collard & Company

 Case Study 1.56

c) Select any time at random within this hour of activity, as the start time for a
particular session.

d) Select the length of this session at random – according to the assumptions, the

average length is 15 minutes and the range is from 3 to 45 minutes.

e) Draw a horizontal bar on this graph to represent the session. The bar will stretch
from the start time for the extent of the session until its end time.

f) Repeat this process until you have a dozen or so bars, and stack each new bar

on top of its predecessors in the graph (with a little separation gap between each
pair of bars).

g) Remember to include some bars for sessions which were already active before

the hour (i.e., their start times are to the left of the zero line), and for sessions
which do not end within the hour (these trail off to the right).

h) Select a random point in time and draw a vertical line at that point on the graph.

i) See how many horizontal bars intersect this line.

j) The number of concurrent sessions at this point in time is represented by the

height of the pile of bars at that point, in other words, by the number of bars
intersecting the vertical line.

k) Experiment with your graph. Draw another couple of vertical lines at other points,

and count how many concurrent sessions are occurring at those times.

(1.8.8) What is meant by the word “concurrently”?

a. Do all on-line users have to active at any given instant, or can they be waiting for
the system and vice versa?

b. What about someone who aborted but did not bother to log out?

c. Until the system times out, should we count them?

d. Do we care either way?

How about a quick break to refresh yourself before continuing! The next step will take
some work.

 Copyright © 2005 Collard & Company

 Case Study 1.57

(1.8.9) Draw a graph to represent the concurrent work activity on the web site during a
typical hour. We have attached a blank starting grid after this question, on which you
can draw your graph.

• Use the horizontal (x) axis to show the time, starting 15 minutes before the hour
and ending 15 minutes after its end, 90 minutes in all. Use the vertical (y) axis to
show the amount of activity (the number of users or sessions, both active and
inactive).

• Represent each user session by a horizontal line, shown as solid for those

intervals when the session is active and dotted when waiting (e.g., for think time).
Each line will be a chain of interspersed solid and dotted segments.

• Stack the horizontal lines on top of each other for the same time period. For

brevity, limit the horizontal lines on your graph to 10. Those will be enough to see
the patterns.

• Plot the sessions (i.e., the horizontal lines) with random starting and ending

points, including some before the beginning of the hour and after its end. Assume
that there is on-going activity with no ramp-up or ramp-down: the web site is fully
operational during the period from15 minutes before the hour begins to 15
minutes after it ends.

• See the session statistics provided below to determine the active / inactive time

ratios and the session lengths.

• Note that within the hour, a user may log-off and then log back on. In other
words, one user could have more than one session during the hour. Another user
could have no sessions (i.e., is not logged on at all). Do not include people who
do not log on at all during the hour in your set of 10 users.

• At each 10-minute point on the graph, count how many concurrent user sessions

there are and how many are currently active. Express these numbers as
percentages of the 10 users.

• Calculate the number of active and inactive sessions at each 10-minute interval.

Base these estimates on (a) the percentages you just calculated, and (b) your
earlier calculation, (the answer to question 1.8.1), of many web site visits or
sessions are expected in a typical hour.

 Copyright © 2005 Collard & Company

 Case Study 1.58

• Document any significant assumptions you make that may not be obvious.

 Copyright © 2005 Collard & Company

 Case Study 1.59

Concurrent Work Activity

 -5 +5 +15 +25 +35 +45 +55 +65

 -5 +5 +15 +25 +35 +45 +55 +65

 Copyright © 2005 Collard & Company

 Case Study 1.60

 Time in Minutes

 Copyright © 2005 Collard & Company

 Case Study 1.61

(4.8.10) What is the expected average number of concurrent visitors?

(4.8.11) What is the expected peak number of concurrent visitors within a typical hour?

(4.8.12) What is the expected peak number of concurrent visitors in a typical month?

(4.8.13) What is the minimum number of concurrent web site visits or sessions?

(4.8.14)How many hits and page views will happen to the home page in a typical hour?

(4.8.15) How many page views will happen to the home page in the peak hour of a

typical month?

(4.8.16) Are there any inconsistencies in your calculations? Can you use dimensional

analysis to find questionable answers? (This technique is explained in the
glossary.)

(4.8.17) So what? How could and should we use the results of these computations in

our test work load planning?

You are now about halfway through this exercise – time for a brief break to let your
brain cells cool off.

B. TEST EXECUTION LOGISTICS

(4.8.18) What should be the sample size? I.e., about how many of each significant

event or transaction should we include in each test run?

(4.8.19) How should we validate and cleanse the collected data?

(4.8.20) Should we compute and use the mean, median or mode of the data

observations?

(4.8.21) Approximately what should be the elapsed time for each test run? For how long

do we need to observe and gather data?

(4.8.22) During this period, what can we monitor in order to ensure that the

measurement process proceeds in a satisfactory manner?

(4.8.23) How do we make the decision, if necessary, on whether to continue or abort a

 Copyright © 2005 Collard & Company

 Case Study 1.62

test run?

(4.8.24) Can we deliberately accelerate the test throughput, faster than real world rate

of events occurring, in order to shorten the test duration?

a. If so, how can we adjust for this acceleration of the testing in the
 data analysis?

(4.8.25) Can we make the test case mix more negative (i.e., more destructive) in order

to enrich the opportunities for system failure, faster than in the real world rate, in
order to shorten the test duration?

b. If so, how can we adjust for this in the data analysis?

(1.8.26) What other significant assumptions besides the ones listed below, if any, have
you made in this exercise?

Description of the Situation, Section C: Volumetric Assumptions

Use the following data to calculate your answers to the work load questions. Please
document any assumptions you make. See the glossary for terminology explanations.

User Demand

The 5,000 active customers will visit the web site, on average twice per month.

Another 5,000 casual visitors will access the site per month.

The volume of traffic is approximately the same from day to day.

Session Statistics

A site visit, or session, lasts an average of 15 minutes.

While session lengths can be shorter than a second or at the other extreme indefinitely
long, 90% of sessions lengths fall in the range from 3 minutes to 45 minutes.

Each visit or session accesses and downloads the home page once on average.

For a typical user session, the ratio of active involvement with the web site (e.g.,
downloading a web page) to inactive (still connected, but passively reviewing or

 Copyright © 2005 Collard & Company

 Case Study 1.63

thinking), is 10% to 90%.

Peak Loads

The number of sessions in the peak hour is expected to be 3 times the number in the
average hour.

The peak number of concurrent users in a peak hour is expected to be 3 times the peak
number in the average hour of the day.

Exercise 1.9: Balancing Exploratory and Structured Testing

Objectives

The purpose of this exercise is to determine the right mix of exploratory and structured
testing for this project. Commonly, many unknowns complicate performance testing
projects and the more the unknowns the less structured and pre-planned the testing can
be. Review each of the following items and assign a score for your project to that item,
on a scale of 0 (the item is thoroughly understood and largely known) to 5 (the item is
unknown or highly uncertain). Then sum the individual scores to obtain a total for the
whole list. Typically, the more common uncertainties on performance and robustness
testing projects are:

(1.9.1) How clear, complete, realistic and testable are the performance
 requirements? _______

(1.9.2) How well do we understand what aspects of the system’s
behavior are we interested in examining? In other words, what
specifically do we want to measure or monitor? _______

(1.9.3) How do we analyze and derive conclusions from these measurements?

(1.9.4) What load(s) or mixes of demands can we place on the system while
we are measuring its performance and robustness characteristics? _______

(1.9.5) How can the test equipment be set up, connected and configured?

(1.9.6) What and where are the vulnerabilities in the system we are testing?

 Copyright © 2005 Collard & Company

 Case Study 1.64

(1.9.7) What issues, complications and hassles are we likely to encounter during this
performance testing project? _______

(1.9.8) How comfortable is our team about our ability to handle these issues?

(1.9.9) Are the completion criteria for performance testing well defined, clear and agreed
to? _______

(1.9.10) How many iterations of debugging, tuning and/or modification will the system
have to go through as part of this project? _______

 Total Score: _______

This number, the total score, is the approximate percentage of the testing effort on the
project which should be exploratory, and the remainder of the effort will be structured. If
the total score is high (above 33 out of a possible high of 50), it is important to inform
the managers and clients about the inherently high risk nature of the performance
testing project, and to develop contingency plans in case the project does not proceed
as expected.

Exercise 1.10 Reviewing a Detailed Test Scenario

Objectives

A performance test scenario describes a particular test to run, including the mix of
demands to place on the system, the test equipment and tools, what data to collect, and
so on. (Some people call this a test case, test script, test condition, etc.)

The main purpose of this exercise is to determine how detailed the test planning should
be for this project, and how much documentation makes sense in a performance test
scenario. A secondary purpose is to learn the attributes of an effective test scenario.

Instructions

(1.10.1) Graph the typical work flow as described in the test scenario below, on a scale
with one-minute intervals across a total elapsed period of 15 minutes. In the graph,
show how the load mixes change minute-by-minute and also show the flow and
sequence of events.

 Copyright © 2005 Collard & Company

 Case Study 1.65

(1.10.2) How does the situation change if we instead chose to draw the graph with one-
second intervals?

(1.10.3) Are the directions in the following test scenario sufficient for a tester with
average skills to perform this test successfully?

(1.10.4) Is the test scenario consistent with the performance requirement stated earlier.
Should it be?

(1.10.5) List seven desirable characteristics of a performance test scenario. Consider:

• What do we want a performance test scenario to do for us?

• What do we want a performance test scenario to look like?

• What do we want a performance test scenario to contain?

Description of the Situation, Section D: Performance Test Scenario

Name of this Performance Test Scenario:

ANNOUNCEMENT OF A NEW “LITTLE BOOK”

Summary of Purpose and Intended Use: This scenario determines whether the system
can handle the demand that occurs when a new book catalog is announced and triggers
a surge of new orders, or when a promotion for a particular book is distributed.

Typical Work Flow: A batch of 1,000 customers (20% of the 5,000 customers on the
database), receive the e-mail notification of the new catalog’s availability or the book
promotion. These notifications are broadcast at a constant rate, and all are sent within a
10 minute period.

Of these customers, 200 (20% of the 1,000 receiving the notification) respond within an
median time of 5 minutes each. (In other words, 50% respond faster than 5 minutes and
50% slower.) These people download the table of contents page of the new e-catalog
that is being announced. The typical respondent then requests and reviews one more
page of the catalog in the next 5 minutes. Next, 20 customers (33% of those who
downloaded additional information in the form of the table of contents page, a detail
page from the catalog, or book searches) each places a new book order. The median
order is sent 5 minutes after. The flow of messages continues for a total elapsed time of

 Copyright © 2005 Collard & Company

 Case Study 1.66

15 minutes after receiving the notification. Orders arriving after the first 15 minutes are
ignored in this scenario, since by then the load has dropped significantly below its peak
and the system behavior is no longer of interest.

Note: Depending on the organization and its established procedures, this work flow may
be counted as one test case, or as a suite of 1,408 individual but related test cases
(1,250 + 125 + 33 transactions, not including background noise).

Description of the Test Scenario

Overall Approach: This scenario mirrors the demands associated with the
announcement of the new book and the ensuing surge of sales.

Test Infrastructure: The same equipment and facilities, the same support software (e.g.,
the OS) and database, will be employed as the ones used in the live operational
environment. The scalability test approach uses infrastructure realism: the test
environment will mirror the live environment, and use a copy of the full live database.

Adjustments to Measurements: No adjustments are needed for the differences between
the test lab vs. the live environment.

Test Equipment (hardware, networks, databases, support software): Same as used in
the live operation.

Test Work Loads: As described earlier, in the item entitled: Typical Work Flow

Automated Test Scripts Used in this Scenario:

Web site demands

Home page downloads (mandatory)
Book search (mandatory)
Book query (optional for this test scenario)
Book order (mandatory)
Credit card authorization (mandatory)
Query status of existing order (optional)

Internal e-mail traffic -- among all departments (mandatory)

Senior management transactions: ad-hoc query (mandatory)

 Copyright © 2005 Collard & Company

 Case Study 1.67

Exercise 1.11 Designing the Test Environment

Objectives

The purpose of this exercise is to analyze issues related to the test environment.

Questions to Address

(1.11.1) How do we generate and drive the test loads? E.g., do we perform the test
manually or use automated tools?

(1.11.2) What environment (test equipment and facilities) do we need for the
performance testing?

Exercise 1.12: Estimating the Number of Test Cycles

Performance testing is usually highly iterative, with rapid re-tests as bottlenecks are
found and resolved. This means the test facility set-up and re-run must be agile. It also
means that an early if crude estimate of the number of test cycles is important – if we
assume 3 cycles and the project actually requires 15, our deadline is imperiled.

(1.12.1) What are the main factors which will influence the test duration and number of
cycles?

(1.12.2) Approximately how many test cycles are needed?

• To establish a working test facility, including ensuring that test equipment is
installed and connected correctly, and debugging test scripts?

• To explore and build a sense of how the system works and the work load flows?

• To uncover and resolve bottlenecks?

• To build confidence that the tested system is ready to go live?

Exercise 1.13: Reviewing the Performance Test Plan

(1.13.1) Audit your test plan to make sure that it will work, by addressing the questions
in the checklist.

 Copyright © 2005 Collard & Company

 Case Study 1.68

Performance Test Plan Review Checklist

This checklist is organized into these sections:

 0. Status: Readiness of the Plan for Review
 1. Experience of the Test Planners
 2. Target Audience for the Test Plan
 3. Commitment to the Test Project
 4. Test Objectives and Scope
 5. Fit of the Test Strategy to the Need
 6. Test Focus and Priorities
 7. Feasibility of the Test Plan
 8. Validity of Assumptions
 9. System Testability
 10. Test Coverage
 11. Test Entry Criteria
 12. Test Completion Criteria
 13. Test Automation Approach
 14. Project Work Plan and Schedule
 15. Test Plan Flexibility and Maintainability
 16. Test Project Staffing
 17. Roles and Responsibilities
 18. Usability of the Test Plan
 19. Test Environment Preparation
 20. Project Tracking
 21. Project Fit
 22. Project Coordination
 23. Test Case Design and Organization
 24. Test Execution
 25. Compliance with Standards
 26. Testware Re-Use

A detailed list of questions follows. There is some deliberate overlap in the questions,
because sometimes it is useful to ask the same question from a different perspective or
in different words. Not all the questions will be relevant in any particular test plan
review.

0. Review Status

0.1 Is the test plan reviewable? The test plan needs to be clear, readable, and
understandable by the people who are reviewing it and also by the people who will be

 Copyright © 2005 Collard & Company

 Case Study 1.69

executing the test.

0.2 Is the copy of the plan being reviewed the current and approved version rather
than some earlier, obsolete one?

0.3 Who else has already reviewed this test plan? Do they whole-heartedly embrace
it, or do they have reservations? Do their reservations have a foundation?

1. Experience of the Test Planners

1.1 Who have been the lead contributors to the test plan?

1.2 Who else have been peripherally involved in the test planning, for example, in
advisory roles?

1.3 Is there a level of comfort that the people who developed the test plan have a
sufficiently in-depth understanding of (a) the background subject matter, (b) the system
requirements, (c) the technical environment and (d) the testing & QA techniques, in
order to be able to deliver a valid plan?

2. Target Audience

2.1 Does the plan identify who is its intended audience – the intended readers,
approvers and plan users? If it is not explicitly identified, is the audience clearly
implied?

2.2 Is the audience the right one, and does the plan reflect a reasonable
understanding of this audience?

3. Commitment

3.1 Whose commitment is needed for the test project to succeed?

3.2 Does the test project have buy-in and support it needs from these people?

3.3 If not, do the test planners have a strategy for obtaining this support?

3.4 Have the major constituencies and vested interests, who have needs and
expectations from the test results, been identified in the plan? (These may or may not
be the same individuals and groups whose commitment is needed for the test project to
succeed.)

 Copyright © 2005 Collard & Company

 Case Study 1.70

3.5 Have the major constituencies and vested interests been involved adequately in
the test planning?

3.6 Have their needs and expectations been adequately addressed in the test plan?

3.7 Are they willing at this point to sign-off on the test plan?

4. Test Objectives and Scope

4.1 Is there evidence that the test planners understand the success and acceptance
criteria for the overall system development or maintenance project?

4.2 Is there evidence that the test planners understand the constraints on the overall
project? (These constraints include the project schedule and budget, quality practices,
availability of software engineers to work with testers, etc.)

4.3 Are these success factors and constraints reflected in the test plan?

4.4 Are the test objectives clearly identified in the plan? In other words, is it clear
what the test project intends to accomplish?

4.5 Are the objectives adequate, achievable and measurable?

4.6 Is the test scope clearly identified in the plan, including what will not be tested?
Is the scope definition specific and unambiguous? Is it reasonable?

4.7 Does the scope of the planned test project encompass all the types of testing
that may be needed, for example: application functionality testing, performance testing,
usability testing, testing across multiple platforms, on-line help and user documentation
testing, etc?

4.8 Have all the items which need to be tested (the specific features, Web pages,
transactions, databases, etc.), been listed?

4.9 What allowance does the plan make for possible scope creep?

5. Fit of the Strategy to the Need

5.1 From the test plan, is it clear what the overall test strategy is, i.e., the approach
proposed to achieve the test objectives?

 Copyright © 2005 Collard & Company

 Case Study 1.71

5.2 Is the test strategy a coherent and practical one? Does it make sense given the
circumstances?

5.3 What alternatives and trade-offs were considered for the testing?

5.4 What evidence is there that the proposed approach is the best alternative?

6. Test Focus and Priorities

6.1 Are the test focus and priorities clear from the plan?

6.2 Are they the right ones, given the context of this test project?

6.3 Has a risk assessment be done to identify the likely vulnerabilities of the system
in live operation?

6.4 Is the risk assessment acceptable? Are there any major risks which have been
overlooked or downplayed? Are there minor risks which have been overstated?

6.5 Has this risk assessment been used to focus the test effort?

6.4 Will feedback from the risk assessment be used to mitigate risk, as well as
guiding the testing efforts? (These mitigation activities may be outside the scope of the
testing project.)

7. Feasibility

7.1 Will the plan work? If the proposed approach is followed and the major steps
undertaken, is there a reasonable assurance that the test objectives will be satisfied?

7.2 Is the test plan specific enough to be implemented? If we turned it over to typical
testers, would they be able to proceed productively?

7.3 Is the plan overly ambitious, given the limitations of test expertise, test facilities,
deadlines, and so on?

7.4 Has a risk assessment been done on the test project itself?

7.5 What are the major risks that the test project will not work as planned?

 Copyright © 2005 Collard & Company

 Case Study 1.72

7.6 What unresolved issues are associated with the test project? What is the plan
for reaching resolution?

8. Assumptions

8.1 Are the major assumptions underlying the plan documented, clear, reasonable
and agreed to by the key parties involved?

8.2 What assumptions have been made about skills and expertise needed for
testing, about resource demand, and about resource availability, as and when needed
to fulfill this demand? Are these resource assumptions reasonable?

8.3 What assumptions have been made about the test facilities and tools?

8.4 What assumptions have been made about the relative cleanliness, testability and
the readiness of the system to test? What assumptions have been made about the
degree and quality of the testing that has already been performed in prior phases?

8.5 How can the reasonableness of the assumptions be checked?

9. Testability

9.1 Is the system or product specification testable, i.e., does it provide a sufficient
foundation -- regardless of the form in which it may be available -- on which to
determine what to test?

9.2 If not, are there other adequate sources of equivalent information about the
system?

9.3 Does the test plan address how the system can be designed for testability, and
the testers’ role in this?

9.4 If the system design is already completed, what access points (also called hooks
or probes), and what test features have been incorporated?

9.5 Does the test plan address how the testers will exploit these built-in access
points and test features?

10. Coverage

10.1 Will test coverage be measured? If so, how?

 Copyright © 2005 Collard & Company

 Case Study 1.73

10.2 Have coverage goals been set for the testing?

10.3 If so, does the test plan explain the rationale for the goals?

10.4 Are these coverage goals reasonable?

10.5 What is the breadth of functional coverage planned in the test, and how does this
compare with the entire functional breadth of the system we are testing? If certain
features are not being tested or are being lightly tested, is this justified?

10.6 If the test is for a change to an existing system, is the scope of re-testing of
existing features adequate in this particular situation? Is a comprehensive regression
test required after this change?

10.7 Does the depth or thoroughness of testing of each particular feature or condition
(e.g., the percentage of detailed path coverage that is provided by the tests), match the
risk profile of that feature? In other words, is the feature being under- or over-tested?

11. Test Entry Criteria

11.1 Are the criteria for the commencement of the testing clear, agreed on and
reasonable? For example, are there acceptance criteria to help ensure that the system
or product as delivered is actually ready to test?

12. Test Completion Criteria

12.1 Are the criteria for completion of the testing clear, agreed on and reasonable?
When these criteria have been met, will the system really be ready to release with
confidence?

12.2 What compromise pressures may be encountered during the testing, to release
the product to the client(s) before it may be ready? How will these pressures be
handled?

13. Automation Approach

13.1 Are the test tools to be used appropriate for the job – do the testers know them,
and are they available to the testers and reliable?

13.2 Has adequate consideration been given to re-using existing automated test

 Copyright © 2005 Collard & Company

 Case Study 1.74

cases?

13.3 Is the division between manual and automated testing clear from the plan,
together with the rationale for choosing either manual or automated testing in the
various areas of the test project?

13.4 Is the division between manual and automated testing appropriate? Would any
parts of the manual testing be better if they were automated, and vice versa?

14. Project Work Plan and Schedule

14.1 Is there a test work plan and schedule that identifies the testing tasks, their inter-
dependencies, the specific deliverables from each task, resource needs and milestone
dates?

14.2 Does the test work plan unfold or flow logically?

14.3 Is the sequence in which the test activities will be done approximately the right
one?

14.4 Have potential bottlenecks and constraints on the testing been identified?

14.5 How does the plan address these bottlenecks and constraints?

14.6 Are there alternate, back-up or contingency plans, if the success factors required
for the proposed approach later cannot be attained?

14.7 How were the time and cost estimates for the testing calculated, and what are
the estimates based on? Are they reasonable?

14.8 Is the planned amount of test activity proportionate to the amount of development
and maintenance effort on the project, and to the perceived degree of risk and criticality
inherent in the system?

15. Plan Flexibility and Maintainability

15.1 Are there contingency plans, in case events do not happen as anticipated during
the testing?

15.2 If the test plan is imperfect (and they all are, to some extent), are there
mechanisms to help learn from experience, revise the plan and carry on smoothly with

 Copyright © 2005 Collard & Company

 Case Study 1.75

the revised version during the test execution process?

15.3 Does the plan identify the individual(s) who are authorized to approve changes to
the system functionality and scope?

16. Project Staffing

16.1 Does the plan clearly state what skills and expertise are needed?

16.2 Are people with sufficient skills available when the plan says they will be needed?

16.3 Has adequate consideration been given to hiring consultants, or out-sourcing the
portions of the testing where internal resources are lacking?

16.4 Does the plan identify the possible points of contention with other projects which
will be competing for the same scarce people?

16.5 How does the test plan propose these resource conflicts be resolved?

17. Roles and Responsibilities

17.1 For the groups and individuals who will be involved in the testing, have their
respective roles and responsibilities been defined or at least outlined?

17.2 Have the people who will follow and execute the test, actually reviewed what is
going to be expected of them? Do they understand the specific tasks, work load,
working conditions, time demands, unusual demands such as weekend overtime (if
any), deadlines to be met, reporting relationships during the test project, and who buys
the doughnuts? (It's essential to feed the testers.)

18. Usability of the Test Plan

18.1 Who are the people who will have to follow this plan and execute the test?

18.2 What are their characteristics, availability and skills?

18.3 What do they need to know in order to test successfully, and is this provided by
the test plan?

18.4 Is it clear how the people will actually use the test plan? Why, when and how in
their work?

 Copyright © 2005 Collard & Company

 Case Study 1.76

18.5 Have these people reviewed the test plan?

18.6 If so, what is their opinion? Does it fill their needs and is it usable from their
perspective?

18.7 Is the plan specific enough to be implemented. If we turn it over to the people
who will do the work, can they proceed effectively?

19. Test Environment Preparation

19.1 What facilities are needed for the test?

19.2 How well do they represent reality, i.e., mimic the live operation?

19.3 Are the requested test facilities already available?

19.4 If not, does the test plan describe how they will be acquired, built or borrowed?

19.5 Is the acquisition of the facilities realistic?

19.6 Is the plan for setting up, checking out and maintaining the test environment
sufficient and practical?

19.7 Are the any known limitations of the test environment? If so, how does the test
plan adjust for them?

20. Project Tracking

20.1 During test execution, how will the test project status be monitored?

20.2 How will the testers assess whether they are on track, or make mid-course
corrections if needed?

20.3 How will the overall test effort be managed and progress reported?

20.4 Are these questions addressed in the test plan?

21. Project Fit

21.1 Does the test project fit suitably within the context of the overall system

 Copyright © 2005 Collard & Company

 Case Study 1.77

development or maintenance project?

21.2 Does the testing fit suitably within the overall corporate culture, “the way things
are done around here”?

22. Project Coordination

22.1 Does the test plan address how the test execution effort will be coordinated with
other related testing activities, such as problem reporting, follow-up and re-testing?

22.2 How will the testing activities be coordinated with the version control, change and
release management processes?

23. Test Case Design and Organization

23.1 Does the test plan identify the test case design techniques which will be used in
this project?

23.2 If so, are the selected techniques appropriate in this situation?

If the test plan contains test cases:

23.3 Are the test cases traceable back to the features or specification(s) – i.e., is there
an easy-to-use cross-reference among the test cases and the features we are testing?

23.4 Are the individual test cases feasible and practical? At the least, a representative
handful of the test cases in the test plan should be selected and reviewed for
practicality.

23.5 Do the test cases comply with the expected standard format for test cases?

23.6 Are the test cases cross-referenced back to the system requirements, features
and system versions?

See also the test case design checklist in my book entitled: “Developing Effective
Software Test Cases”.

24. Test Execution

24.1 Does the planned sequence or flow of the test case execution proceed from the
most critical to the least critical?

 Copyright © 2005 Collard & Company

 Case Study 1.78

24.2 Does the test plan describe what test support processes will be used, e.g, for
problem reporting and resolution? Are these processes appropriate for the project?

25. Compliance with Standards

25.1 Does the test plan comply with the organization’s expected standard format for
test plans?

25.2 Does the plan comply with the organization's guidelines for the use of test
facilities, tools and test procedures?

25.2 Does the test plan use the standard terminology which is used in the
organization? Does it contain or refer to a glossary of terms?

25.3 Has the test plan been placed under version control?

25.4 Have copies of the test plan been filed with the appropriate groups (e.g., the test
librarian)?

26. Testware Re-Use

26.1 Is the test plan, or at least its relevant portions, designed to be re-usable in future
testing projects?

Is this review checklist longer than your test plan itself? (While this question is meant
as a joke, at least one organization has stated that its test plans cannot exceed two
pages.)

 Copyright © 2005 Collard & Company

 Case Study 1.79

II. The Full Case Study: Understanding the Situation

The exercise below is the first in a series where you, working individually or in a small
team, will develop a performance testing strategy. If you have not already done so, read
the earlier “Introduction to the Case Study” before continuing.

Exercise 2.1: Reviewing the Proposed Testing Objectives

Introduction

Your purpose in this first exercise is to understand a typical business situation, analyze
the pertinent issues and consider what the performance testing objectives should be.

Instructions

First, read the background to the case study in the attached Description of the Situation,
Section 2.A only. (You do not need to read Sections 2.B and later for this exercise.) In
class, we won’t take the time to first fully absorb and intensely critique the description,
as we want to start the group discussion of the issues as soon as we have a sense of
the situation.

You may say: “Why should I have to read this? The only thing I ever read is TV Guide.”
Actually, this reading is important. Testing is context-specific, and we can talk endlessly
about test strategy, but there is no substitute for actually getting in there and doing it
ourselves. This background reading provides the context – it describes a typical
challenging situation you are likely to encounter in your job.

Second, based on the background (i.e., the description of the situation), answer the
questions listed below. Each answer need be no more than a few lines long. In the time
available for this exercise you may not be able to complete all the questions.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.80

The intention here is not to rush so that all questions are covered, but to think about the
issues in developing a performance test strategy. These questions are tough. We do not
expect perfect answers, but we would like your best thinking. If you become bogged
down on a question, however, it is not worth agonizing over, so move on after a few
minutes to the next question. Later, Part 2 of the case study provides suggested
answers to these questions.

Questions to Address

Note that we are not looking for polished and detailed answers at this time, just an initial
sketch of your thoughts, ready for discussion with the others in the class.

(2.1.1) What do we want to accomplish with this performance testing project? This
question is typical of what you will face on the job, but it may appear daunting at first
sight. Hint: one way of tackling this question (though not the only way), is to break it
down into a series of a few other questions, such as:

• Why are we doing this test?

• Who do we need to satisfy?

o Who are the vested interests: who have needs and expectations of the

system performance and of the test results? These individuals or groups
sometimes are called stakeholders or constituencies.

o Note that there are usually significant constituencies beyond the
immediate user community, including some who use the system little if at
all.

• What is the relative importance and influence of each of these constituencies?

Presumably, this ranking sets the priorities for the amount of attention and
service each receives.

• What do they want to know, in terms of the uncertainties to be resolved and the

issues clarified by the performance test?

• What SHOULD they want to know?

• How will they use the results of the performance test?

(2.1.2) Can the testing be avoided? Some of the senior managers are skeptical about

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.81

the performance testing project, and believe in the “fat server” approach
instead. How would you respond to the fat-server suggestion that we skip the
performance testing, save the time and money needed for this effort, and
simply “beef up” the equipment and communications bandwidth as and when
necessary in live operation?

(2.1.3) Can we define system performance goals independently of the technical

environment, specifically how the system is implemented and what
infrastructure it uses?

(2.1.4) Do we need an initial impact assessment (IIA) for this project? An IIA assesses

the need for a performance test quickly and early, and gives a first impression
of its likely focus, scope and size, based on the limited early information
available about the situation. Its purpose is to identify projects where a
performance test is needed and the test time and cost is justified, versus ones
where the performance issues do not justify testing. (Though Appendix B
describes the initial impact assessment in some detail, you will not need to
review this appendix yet.)

(2.1.5) Do we need to take a baseline in order to assess the testing objectives? The

term “baseline” is defined in Appendix A.

(2.1.6) A set of business objectives are included in the description of the situation.

Which of these business objectives can reasonably be addressed in a
performance testing project? Which cannot?

(2.1.7) Performance goals are stated in the description of the situation (Section 2.A).

Overall, are these performance goals for the system (i) relevant and significant,
and (ii) realistic (i.e., probably feasible to attain)? Has any major performance-
related goal been omitted?

(2.1.8) Performance testing objectives also are stated in the description of the

situation. Which of these testing objectives can be directly linked back to one or
more specific business objectives? Which cannot?

(2.1.9) Skip this question if you wish – it is included to reinforce the lessons learned

from answering the last two questions. Which of these testing objectives can be
directly linked back to one or more specific performance goals? Which cannot?
(A performance goal differs from a testing objective. An example of a testing
objective is to evaluate whether response time is adequate, by comparing the

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.82

goal (a response time target) with the measured response time. The goal is the
response time that the system is expected to meet under certain
circumstances. It is difficult to evaluate if performance is satisfactory without
having reasonably specific goals.)

(2.1.10) Are these testing objectives measurable, specific and objective enough so that

we can evaluate if they have been accomplished? (The specificity of the testing
objectives depends on the specificity of the performance goals. If you felt that
the stated performance goals are not specific enough, assume for the moment
that these goals have been revised and now are realistic and measurable. In
other words, answer this question as if the revised goals can be used to
evaluate the system’s performance.) Realistically, how specific can the testing
objectives be at this time, given the uncertainties and limits on our knowledge?

(2.1.11) In sum, are the stated testing objectives and performance goals appropriate? If

not, what should they be?

(2.1.12) How will the constraints (see the section entitled: “Testing Constraints”) affect

the performance testing project?

Follow-Up: Team Discussion of the Testing Objectives
(Allow 60 to 90 minutes for this exercise when you are working in a team as part of a
class, or outside class if you have a group of peers who have worked through exercise
2.1 and are ready to discuss it.)

The purpose of this exercise is to compare your answers to Exercise 2.1 with others’,
and especially to be exposed to the thinking of people from different backgrounds and
with different perspectives.

Instructions

If you have not previously organized teams, form a team with two to three other
classmates for this exercise. Find a comfortable place to gather around and work
together. Together with your teammates, compare your answers to the previous
questions in Exercise 2.1. The intention in comparing answers is not necessarily to
reach consensus, though that’s fine, but to obtain a deeper appreciation of the issues by
seeing others’ perspectives.

Allow only about 10 minutes to discuss each question, though your team can choose to
take longer if the extended discussion is useful. (You will get through fewer questions in

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.83

the time allotted if you take longer per question. Some of these questions could take 3
weeks each to discuss, but we only have limited time in the classroom.) It is OK if you
do not get through all the questions in the time allotted, but move on to the next
question if you feel that you are becoming bogged down on any one question. At the
end of the exercise, be prepared to discuss and justify your team’s answers with the
class.

Description of the Situation, Section 2.A: The Business Context

A.1 OVERVIEW

The following sections provide the background information needed for the exercises.
These sections are labeled:

A.1.1 Context
 A.2 The Business Background
 A.3 Your Responsibilities
 A.4 Basic Functions of the System
 A.5 Interfacing Systems
 A.6 Business Operations and Processes

A.7 System Work Flows

A.1.2 Objectives
 A.8 Business Objectives for the System
 A.9 Performance Goals
 A.10 System Requirements which Influence Performance

A.11 Assessment of the Current Performance and Robustness
A.12 Performance Testing Objectives
A.13 Critical Success Factors

Later, more information about the situation is provided in other follow-on sections (the
Description of the Situation, Sections 2.B, 2.C, 2.D and 2.E), but this information is not
needed for the first few exercises.

A.2 THE BUSINESS BACKGROUND

Testing Books (TB) is a book club which specializes in selling testing and quality
assurance books. The official company slogan is: “Test Geeks ‘R Us” and the web site
is testingbooks.com. The senior managers of the book club describe the business as
thriving, growing and profitable. They believe the book club has a core of loyal fans that

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.84

prefer its services to generalists like Barnes & Noble and Amazon, and they want to
build on this success by providing even better service and more competitive prices.

To support this business goal, TB is in the process of building a comprehensive new
information system to support its core business operation, which is the ordering and
shipping of books to its members. This new system will essentially replace the existing
automated and manual systems which the book club uses for ordering and shipping
books, and also replace an existing web site which is not considered to be very
effective.

A.3 YOUR RESPONSIBILITIES

Your job will be to test the performance of this new system, because its performance is
critical to the success of the system and thus to the health of the book club. The scope
of this testing project includes measuring and evaluating the system response time,
throughput, error rates, resource utilization, scalability and ability to handle peak loads.
Congratulations on your new assignment (or condolences). You will report directly to the
vice president of information systems for the purposes of this project.

Your immediate assignment is to draft a high-level strategy which describes how you
will proceed and the approach you recommend for this testing project. You will present
and discuss this performance test strategy with the senior managers of Testing Books
next week. In this presentation, they will want to know how you will test the performance
of the system -- not the details as yet, but your overall approach. The managers expect
an insightful, cogent analysis, and they are confident that what you say next week will
be well thought through, organized and pertinent. (No pressure here at all!)

A.4 THE BASIC FUNCTIONS OF THE SYSTEM

The new system processes book orders: it provides order entry and order fulfillment
capabilities. With this system, customers can order books directly from the web site and
book club employees can enter orders through an Intranet (an internal client/server
network which uses virtually the same interface as the external customers see). The
system also manages the fulfillment of these orders. In all, it will support the following
business activities:

• Ordering of books from the book club.

• Picking, packing and shipping of books to members in fulfillment of orders.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.85

• Answering queries on the status of memberships, orders and shipments.

• Publication of electronic and printed catalogs which show what books are
available to order.

• Broadcasting of special offers and promotions.

• Reporting of the management information needed by the book club executives to

run the business.

This management information, which is automatically generated by the system, includes
cash flow projections, order volumes, trends (which books are selling swiftly or slowly),
order backlogs, the turnaround times to fulfill orders, book inventory levels, etc. It is
used by the senior managers who are running the business. While the volume of
transactions in this category is likely to be relatively low, it is important to be able to
provide timely answers – executives do not like to wait. Much of the management
information, though not all, does not have to be more up-to-date than 12 hours ago.

This section does not list all the business activities and the system functions that
support them, just the major ones. The complete list of functions that the system is
expected to provide is listed in the system requirements document, and a related set of
use cases describe the services provided and how the functions should work. The
system requirements and the use cases are not attached to this exercise, but this
overview will provide enough information for you to do the exercises.

To realistically measure performance, testers need to know how the system works. At
this stage, you may have questions about the functionality and work flow, such as: “How
does one become a book club member?”, “Can non-members access all parts of the
web site?”, “Is this particular function even on the web?”, and “How does this system tie
into other systems?” A later section, A.12 System Work Flows, explains the main
system-user interactions.

A.5 THE INTERFACING SYSTEMS

In addition to the book ordering system, the plan is to migrate other existing application
systems to the same technical environment (the servers, databases and networks), and
run them in this environment also. The main systems which share the same resources
are:

• Member Billing: generates invoices for books ordered from the book club by

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.86

• Publisher Ordering: generates orders for books ordered by the book club from
publishers, and tracks their delivery status.

members, and tracks shipping and payment status of these orders.

• Communications: handles internal and external e-mail messages.

A.6 THE BUSINESS OPERATIONS AND PROCESSES

The book club business is organized into five main groups: (a) senior management, (b)
the customer service group, (c) the catalog publishing group, (d) the warehouse
distribution group, and (e) the information systems group. Each group has an assigned
set of responsibilities, and there is little or no cross-over of tasks among the five groups.

The customer service group works directly with the book club members. Members can
access the club’s web site or telephone (speaking to a book club employee), in order to
place orders, query order status, make complaints, and change information about their
memberships. The web and phone orders and member data changes are processed
while the member is on-line or is on the phone. The customer service group is intended
to have approximately 100 personal computers (PCs) for its 100 employees. (The entire
business has approximately 300 employees.)

The catalog publishing group chooses the books for the club to offer, collect\s book
reviews and prepares a monthly catalog of available books, which is either printed and
mailed or is distributed via the Internet to the members. (These monthly catalogs do not
contain the full list of books available for sale, just the most topical ones.) The catalog
publishing group is intended to have 25 PCs to support their work. The entire staff of the
catalog publishing group is located at the remote satellite office. (All the other business
groups are located in the headquarters building.)

The warehouse group distributes books to the club members, either from a member
order or as the default monthly selection. A copy of the current monthly book selection
is automatically sent to each active member, unless he or she explicitly informs the club
that he does not want this book. Stocks of high-demand titles are maintained at the
warehouse for filling customer orders. When the supply of any title becomes depleted
the warehouse issues a request to replenish the stock to the publisher. A book shipment
to a member can originate only from the warehouse -- other system users cannot
authorize shipments. Personnel at the warehouse pack and ship approximately 2,000
packages containing about 2,250 books to members in a typical day, or about 50,000
books a month (working 22.5 days per month on average). The warehouse will have 50

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.87

PCs, and 25 handheld wireless devices (also called PDAs or personal digital assistants)
to guide workers who pick books off shelves and pack them.

The senior managers make ad-hoc queries and receive on-line status reports and
graphs which help them to manage the business. They also expect to receive regularly
printed-out monitoring reports from the new system. There are 25 PCs planned for this
group’s use, including support staff such as the administrative assistants to the
managers.

The information systems group supports and maintains the computer systems and will
be expected to support the new system. This group will have 25 PCs including a test
lab.

A.7 SYSTEM WORK FLOWS

The main interactions among the system and its users are as follows.

People can order books either through the web site, or by phone or mail request. Using
the web site, interested parties can search for books by topic, author, etc., query the
availability and price of a book, and query the status of an order in progress. If they
choose, people can enroll as book club members via the web site, phone or mail. A
person does not have to become a member to order a book, but members get special
privileges such as early notification of sales and occasional discounts. There are no
membership fees. Book club members receive monthly catalogs and promotions, either
electronically or in printed form.

An order can contain books from various publishers, with different quantities of each
book ordered. Orders can be modified or cancelled at any time up until the day of
shipment. If a book is not in stock, the system informs the person (or the internal book
club employee) and asks if he or she wants to place a backorder.

A database record is created for every new order, and this record is updated to track the
progression of the order through to fulfillment. The ordering system maintains records
on the book inventory as well as on orders. When an order is entered, the system
generates directives to the warehouse staff to pick, pack and ship the order, as well as
printing the paperwork needed to ship the order. The system provides the capability to
query and update the inventory of books on hand, and automatically decrements the
inventory as books are shipped. Ordering books from publishers and book distributors is
not part of this system.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.88

The ordering system itself does not generate bills or process payments, but triggers
these actions by the separate billing system. People usually pay by credit card, and
members with acceptable credit history can be billed for payment within 30 days. To
collect payment, the ordering system sends a transaction to the separate billing system.
In the event of returned books, the billing system issues refunds but these do not flow
through the ordering system. The system also provides the capability for the catalog
publishing group to update book information such as descriptions and reviews, and to
compose and publish the catalogs.

A.8 THE BUSINESS OBJECTIVES FOR THE SYSTEM

The overall business goals of the senior managers are to (a) grow revenues, (b)
improve profitability, and (c) increase member satisfaction. They have agreed to fund
the new system, on the understanding that it will facilitate meeting these goals.

The specific business objectives for the new system are as follows:

a) Support the operations of the book club, by providing the order entry, fulfillment
and related features. (These features are described in more detail in the system
requirements documents.)

b) Double the volumes of orders entered directly by customers via the web within a

year, and increase their percentages to 80% or more of all orders within three
years (i.e., reduce the number of mail and telephone orders processed by
employees to 20% or less of the total).

c) Improve productivity in the customer service and warehouse distribution groups

by 25%. Productivity in these areas is measured by the number of orders
processed or packages shipped per employee per hour. These measures of
productivity are not affected by the shifting ratios of orders entered by customers
via the web versus by employees.

d) Distribute 95% of all books within 15 working days from the date of an order and

at the least available shipping cost. Here the word “distribute” means that the
order is received by the customer.

e) Distribute books and packages with 98% accuracy, i.e., only 2% of the books or

less should be returned because the wrong book was shipped to a member or
because the member’s address was incorrect.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.89

f) Answer 95% of customer telephone calls (e.g., queries about order status), within
3 minutes.

g) Support the projected growth in membership for the next 5 years. Today’s

system configuration does not have to support the load predicted for 5 years in
the future, but the system must be upgradeable to meet the projected demand.

o All systems are upgradeable -- if there are no time and cost limits. The

requirements here are that upgrades:
 Decrease or at least do not increase the per-item processing costs

(e.g., per order).
 Can be implemented well before the current capacity is consumed,

i.e., the elapsed time from when a need to upgrade is identified to
its implementation is short enough to avoid capacity overload.

o The projected growth is described later in this document (in the

Description of the Situation, Section 2.D).

A.9 THE PERFORMANCE GOALS

In order to fulfill the business objectives, the managers have stated that the system
must meet these performance goals:

a) Response times must be satisfactory when the system is operating under both
average and peak loads.

b) The system must operate correctly when accessed simultaneously by multiple

users.

c) The system must be able to handle heavy loads.

d) Satisfactory performance and reliability levels must be maintained over an
extended period of use (24x365 operations).

e) The system availability (uptime) must be adequate in live operation.

f) The entire system must be tuned optimally in order to efficiently utilize the

computing resources.

g) The system must degrade gracefully, not fail catastrophically, when it is pushed

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.90

up to, and beyond, it’s planned maximum capacity.

h) The system must be scalable, so it can be upgraded in the future to
accommodate the projected growth, without creating per-item processing costs.

A.10 SYSTEM CONSTRAINTS

System requirements in areas like usability, security and maintainability usually are not
performance requirements per se but they often are performance-related. Testing that
these other requirements have been met is outside the scope of the performance
testing project. Nevertheless, these system requirements may significantly influence
performance. If the performance goals are met during testing, but without these
requirements being satisfied, then the executives will consider the performance test
results invalid. The performance-related system requirements are:

A.10.1 Usability

a) The system must be user-friendly, so that visitors to the web site will be
encouraged to browse and order books.

b) The system features must have a consistent format and methods of navigation.

c) It should use high quality, high definition graphs and video and audio clips.

d) The web site must be viewable on all popular browsers and platforms.

e) Users should be able to set their own preferences, e.g., identify their favorite

topics and ask to be notified about future new books on those topics.

A.10.2 Data Availability and Integrity

a) Any member must be able to retrieve his or her full history, if desired, via the web
site. An analysis has found that 2% of members have each placed over 100
orders in the last 2 years – and could request their full histories. The oldest
history still kept on file dates from the founding of the book club 20 years ago.

b) The system must be able to provide ad hoc management reports on demand. An

example of a recent ad hoc report: a manager requested a correlation of the
increases in books sold after price reductions designed to move obsolete
inventory, with the amounts of the reductions.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.91

c) The database must be continually updated in order to provide the latest

information. Is the information on the mirror servers being updated often enough,
as per the business requirements? Most data does not have to be more current
than within the last 12 hours, but selected data should be up-to-date within
seconds, such as changes to orders which currently are being picked and
shipped.

d) Referential integrity (RI) must be enabled for all data which is deemed critical. RI

is defined in Appendix A. It will be enabled on all currently active orders – those
being picked and shipped within the next hour – and the book inventory needed
for those orders. (OK, so the DBA is a little unconventional.)

e) The call center must be able to replay any recorded voice message on demand,

for up to three days.

A.10.3 Security

a) The system must allow new members to establish secure accounts’ from which
to order books and authorize payments, etc.

b) Members’ financial information and payment transactions must be encrypted

using an approved standard encryption algorithm.

c) All of a member’s data must be password protected, and no other member’s data
can be accessed with the first member’s ID and password.

d) The system must be secure from hackers.

A.10.4 Maintainability

a) The system must be easy to maintain.

b) The source code must be under version control.

c) The source code must comply with programming standards (which may have
performance implications), be modular, decoupled with controlled interfaces
among software components, and be documented, visible in its actions and
traceable.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.92

d) Software components must be designed for re-use.

e) The design should facilitate quick, inexpensive modifications with minimal
likelihood of introducing unintended side effects.

A.11 ASSESSMENT OF THE CURRENT SYSTEM PERFORMANCE AND ROBUSTNESS

The current systems are being replaced because their functionality, usability, security,
data integrity, performance, robustness and scalability all can be improved, and for
costs less than the likely benefits.

In general the current system response times and availability are adequate under the
current load levels. But limited load tests using the existing systems have shown that
these response times and availability cannot be sustained as the work volumes grow to
the levels that the managers want to reach.

There is one main exception to the general statement that current performance is OK
under normal loads. That is the search function, which receives frequent complaints
about its speed and ease of use. The database administrator (DBA) maintaining the
current databases believes these complaints will not be erased without a major
database re-design. Another feature of the current systems, which is performed
infrequently but is notorious for its lethargy, is the sales tax audit reporting.

In addition, the planned broadening of the system features and the upgrades needed to
improve the system usability, security, data integrity and scalability (if the current
system was upgraded rather than replaced), are expected to degrade performance.

A.12 THE PERFORMANCE TESTING OBJECTIVES

The purpose of this performance testing project, as outlined by the senior managers, is
to assess the adequacy of the system’s performance in live operation. The questions
they want answered by the performance testing project are:

a) Are response times satisfactory when the system is operating under realistic
loads?

b) Can the system accommodate the anticipated demand, i.e., the traffic volume?

c) Does the system operate correctly when accessed simultaneously by large

numbers of users? (Problems such as features interfering with each other,

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.93

database locking, resource contention and transaction priorities may need to be
considered here.)

d) How well does the system handle heavy and peak loads? (We cannot assume

that the performance degradation from adding additional users or performing
extra work is non-existent, or gradual or linear. A significant increase in response
time may occur when only a few more users are added or the work load
increases by a small increment.)

e) Does the system maintain performance and reliability levels over extended

periods of use, for example, after weeks of running 24x7? (Insidious problems
such as memory leaks will not reveal themselves in short run tests or by testing
with a small number of users. Such problems usually lead to performance
degradation and eventually to system failures.)

f) Will the system availability (uptime) be adequate in live operation? Apart from the

planned downtime for maintenance, is there reasonable confidence that the
unplanned downtime will be held to acceptable levels?

g) Is the system right-sized and tuned optimally?

h) Does the system degrade gracefully, or fail catastrophically, when it is pushed up

to, and beyond, it’s planned maximum capacity?

i) Is the system scalable: can it be upgraded in the future to accommodate the
projected growth over the next 3 to 5 years, without major software re-writes or a
major re-structuring or conversion of the database?

A.13 TRADE-OFFS

There are trade-offs among the performance characteristics of any system, and usually
complex interrelationships. Response time tends to degrade as demand volumes
increase. Availability tends to fall as systems are right-sized, as there is less spare
capacity in reserve for surges or spikes in demand.
To guide decision-making about trade-offs, the senior mangers have declared these
priorities:

• Throughput takes precedence over responsiveness. While both are important, if
forced to choose between throughput and response time the managers would
rather slow the performance for many people than turn some away.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.94

• The managers feel that when the system is down they effectively are out of

business. Availability takes precedence over efficiency. While they do not wish
the system to be grossly over-engineered and thus inefficient and unduly
expensive, they fear this outcome less than being down.

Exercise 2.2: Modeling the Architecture

Introduction

To test a system adequately requires a basic sense of what it does and how it works.
An appropriate model helps us to understand the system and its environment, and
gaining that understanding is the purpose of this exercise.

Developing a workable, realistic model of the live environment is a key to effective
performance testing and related activities like capacity planning, diagnostics and tuning,
and monitoring service levels. A model can help us analyze the system’s behavior,
design the system for testability, speculate intelligently about resource utilization and
bottlenecks, decide what demands to place on the system during testing, and decide
where to monitor performance and what data to collect.

Our feel for the environment also will be important in designing the performance test
facilities and developing a test automation strategy, but these issues are addressed
later and not in this exercise.

You may ask why you have to develop the system architecture diagrams. These are
often provided by the architects, and if they are unavailable we could simply request
that the architects develop them. However, there is an important benefit to testers
sketching the diagrams: this act brings us close to the design. We are encouraged to
think through how the design works or is intended to work, and we are less likely to
uncritically accept assumptions, supposed facts and proposed solutions.

Instructions

(2.2.1) Review the system architecture (the blueprint for the infrastructure), which is
described below in the Description of the Situation, Section 2.B. Because this section
has a great deal of information to digest in one reading, it is better to begin outlining
your answers to the questions as you go and before you have the full picture. I suggest
you read only sections B.1 through B.5 for exercises 2.2.2.1 through 2.2.3.4. Then read
the remainder of the sections (B.6 through B.10) before revising and completing your

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.95

answers to these questions.

(2.2.2) Please answer these questions, based on your reading of B.1 through B.5:

(2.2.2.1) Which parts of the information presented in Section B (more precisely, in

B.1 through B.5), are irrelevant to gaining an initial, broad-but-not-deep
sense of the situation for testing purposes, and thus their possible
inaccuracies can be ignored during this exercise?

(2.2.2.2) What unclear statements, omissions, factual errors, unstated or dubious

assumptions, ambiguities or inconsistencies did you find? Please list them.

(2.2.2.3) Which of these must be resolved before you map the system architecture

and finalize your logical architecture diagrams (as requested below in
2.2.3)?

(2.2.2.4) What if these points cannot be resolved anytime soon? Can you proceed

with developing your test strategy without resolving them? If so, how?

(2.2.2.5) What missing information would you like to know about the environment

and infrastructure but is not available?

(2.2.2.6) What assumptions have you made about the missing information? Please

list them.

(2.2.2.7) How sensitive is your answer to these assumptions? (If your assumptions

varied, for example, how would that affect your diagrams below? I have
included this question here because it has a natural link to the prior
question. But this question is hard to answer before you try to draw your
diagrams and see where the obstacles are. I suggest you make a note to
return to this question later.)

(2.2.3) To familiarize yourself with the environment, sketch the logical system
architecture based on the following description (initially using sections B.1 through B.5
only from that description).

There are four main types of logical architecture diagrams: user-oriented, function-
oriented, geographically-oriented and device-oriented. Each provides a different
perspective of the same situation, and all can represent and map into the same physical
implementation. See Appendix J for examples of typical architecture diagrams.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.96

Learning and mapping the architecture are best done iteratively – rather than trying to
understand everything up front and then drawing a full, unblemished diagram the first
time, most of us work better if we sketch as we go, erasing and erasing the diagram as
we learn more. I deliberately have limited this exercise to using the data in B.1 through
B.6. Later, we will return and revise the diagrams to incorporate more data, as
presented in sections B.6 through B.10)

(2.2.3.1) Sketch a one-page user-oriented architecture.

• In this view, the intent is to show the facilities by their deployment to user
groups: which user departments utilize which capabilities and application
functionality.

• In your sketch, represent each major user group by a dedicated logical
server. A simple square rectangle, labeled with the department’s or user
group’s name, will suffice to represent this.

• Link the servers together to reflect how they are likely to be connected in
operation. Showing that devices can communicate is important, but the
routing can be inexact at this stage – for example, a star network
configuration in this logical view could actually be implemented as a ring.
Also show the major links to the external world.

• Show a summary of the peripheral devices connected to each server,
such as the hand-held wireless devices. A summary is sufficient – there is
no need to draw dozens or hundreds of icons, one for each individual
peripheral. Include only the peripherals that are user-visible and user-
significant: if most users are unaware that a certain peripheral exists, do
not place it in the diagram.

(2.2.3.2) Sketch a function-oriented architecture.

• Sketch a one-page view of the front-end functions, as described later.

• Sketch a separate one-page view of the back-end functions, as described
later.

• In this view, ignore for the moment the clustering, hot back-up, data
mirroring and load balancing. Showing the duplicate load-sharing devices

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.97

tends to clutter the picture. These can be taken care of by adding a brief
footnote to the diagram, stating that fail-over features and redundant
devices will be included.

• Ignore questions of ownership or geography, just lay out the major
functions provided (web services, database access, printing, etc.)

(2.2.3.3) Sketch a one-page geographically-oriented architecture. Superimpose

your view on a geographical map, in this case a map of the U.S.

(2.2.3.4) Sketch a device-oriented architecture.

• Depending on how much detail you choose to include, this may spread
over a few pages. The pages should fit together to provide a coherent
overall view.

• Since some physical design decisions are not yet final, you may need to

either ignore details or find a way to show the uncertainties in your
diagram.

• Because the detailed data is usually voluminous and can lead to a
cluttered, confusing diagram, do not attempt to capture all the physical
device data in one page. This information includes each device’s brand
and model number, processor speed, amount of semiconductor memory,
etc. Instead, find a reader-friendly way to show the most important
information directly in the diagram, and provide references to the
remainder off-diagram.

While these diagrams are intended to present the logical architecture rather than the
physical, your diagrams should include what we know about the likely physical
implementation at this stage, providing the information is pertinent to performance
testing. The higher the level of abstraction, the more caution is needed to avoid
performance surprises. This means your diagrams should include the main hardware
platforms and devices (servers, routers, switches and controllers), databases and
networks, their main interconnections and the connections to the outside world.

The thought content of the diagrams is more important than the symbols and
conventions you use, and any reasonably clear set of graphics convention is
acceptable. You do not have to make your diagram comply with standards like UML.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.98

(2.2.4) Complete reading the System Architecture section (B.6 through B.10). Revise
your four diagrams to incorporate the new information.

(2.2.5) Based on your revised diagrams, answer these questions:

(2.2.5.1) Which perspective is the most helpful to you? Of your diagrams showing the

four main types of logical architectures: user-oriented, function-oriented,
geographically-oriented and device-oriented, which helped you most to
understand the situation and to plan the performance test?

(2.2.5.2) How sensitive is your answer to the assumptions you made earlier? If your

assumptions varied, for example, how would that affect your diagrams?
Should you change your diagrams and the assumptions behind them, to
reflect any new information or shrewd new insights?

(2.2.5.3) At first glance, do you have any hunches about potential vulnerabilities or

bottlenecks based on the proposed system architecture?

(2.2.5.4) What aspects of this system -- if any -- look straightforward to test for

performance and reliability? Why?

(2.2.5.5) Which aspects look difficult to test? Why?

(2.2.5.6) Of the test suggestions from the technical community (see later), and based

on what you know so far, which ones would you tentatively approve and
incorporate into the test strategy? Which if any would you deny? Why?

(2.2.6) What technical skills and support do we need to test successfully in this
environment?

(2.2.6.1) Within the performance test team?

(2.2.6.2) Externally to the team?

Description of the Situation, Section 2.B: The System Architecture

B.1 ARCHITECTURE OVERVIEW

This section describes the technical infrastructure in which the live system will operate,
and the planned initial system configuration. The system architecture has been derived

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.99

from a business model, which is in the form of a set of use cases describing the
services that need to be supported by the infrastructure. (You will not need to review the
use cases to do the exercises.)

The new system will run on a multi-tier server architecture which will be shared by other
applications needed for the book club’s business operations, such as the billing system.
The system’s technical environment includes databases, web sites, wireless
capabilities, voice call center facilities and high-volume printers.

You do not need expertise as a system architect, system administrator or network
engineer to read and analyze this material, which is organized as follows:

B.1 Architecture Overview
B.1.1 Infrastructure Design Goals and Principles
B.1.2 Logical Vs. Physical Design

B.2 Designing for High Availability
B.2.1 Designed-In Redundancy
B.2.2 Designed-In Scalability
B.2.3 Clustering and Fail-over
B.2.4 Geophraphic Dispersion

B.3 Major Tiers and Work Load Distribution
B.3.1 The Front-End
B.3.2 The Back-End
B.3.3 Load Balancing
B.3.3.1 Network Load Balancing for the Front-End

B.4 The Web Sites
B.4.1 The Primary Web Site
B.4.2 Providing Web Services
B.4.3 Proxy Servers
B.4.4 Web Databases
B.4.5 Location of Web Content Storage
B.4.6 The Secondary Web Site

B.5 The Data Architecture
B.5.1 The Data Content
B.5.2 Data Conversion
B.5.3 Database Size
B.5.4 The Database Servers
B.5.5 Data Distribution and Mirroring

B.6 Networks and Communications
B.6.1 The Network Topology at Headquarters

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.100

B.6.2 Network Interface Cards (NICs)
B.6.3 Utilization of Network Technologies
B.6.4 The Fax and E-Mail Servers
B.6.5 The Voice Telephone Servers
B.6.6 The Wireless Routers or Servers
B.6.7 The Remote Location Servers

B.7 Other Subsystem and Component Descriptions
B.7.1 The Application Servers
B.7.2 The Print Servers
B.7.2.1 Print Out-Sourcing
B.7.3 The Support Software

B.8 Security Considerations
B.8.1 IP Addresses
B.8.2 Firewalls

B.9 System Implementation
B.9.1 Re-Use of the Existing Equipment
B.9.2 The System Implementation Strategy
B.9.3 Physical Installation and Set-Up of the Equipment

B.10 Architecture Evaluation
B.10.1 Review History
B.10.2 Likely Performance Vulnerabilities
B.10.3 Possible Bottlenecks
B.10.4 Test Suggestions from the Technical Community

B.10.4.1 Database Performance
B.10.4.2 Web Site Performance
B.10.4.3 Maintainability

B.1.1 Infrastructure Design Goals and Principles

The system designers’ goals are to deliver a system that

a) works (i.e., provides the features that fulfill the business requirements);

b) is right-sized and supports the business in a cost-effective manner;

c) meets or beats competitors in responsiveness and availability;

d) provides flexibility and agility to accommodate change; improves reliability

through redundancy, and

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.101

e) facilitates troubleshooting by promptly detecting problems as soon as they occur
during live operation and by pinpointing their causes.

The architecture is based on these principles:

a) the business drives the services, and the services drive the technology;

b) agility to respond to change is a fundamental business requirement, and the

architecture is expected to be in flux on an on-going basis;

c) the system is as platform-independent as possible;

d) the system is loosely coupled, in order to minimize bug propagation (so that a
code change on one server, for example, does not necessitate code changes on
other servers);

e) interfaces will be mainstream and standards-based (i.e., only reasonably mature,

non-proprietary interfaces will be utilized);

f) the system can scale up easily to handle the projected growth for the next 5
years; and

g) it is designed for robustness (e.g., fault-tolerant with fail-over capability, load

balancing, redundancy and reserve capacity).

The service-oriented architecture uses Internet protocols to interface among semi-
autonomous applications. XML, messaging and the web will be utilized to re-architect
existing applications and build new, integrated applications.

B.1.2 Logical Vs. Physical Design

The system architects have differentiated between logical and physical design. The
former is a conceptual diagram which shows the resources provided to the system,
such as servers, how they connect together and how they will be utilized. This logical
design does not necessarily reflect the exact physical implementation, though it should
be possible to map from the logical to the physical and vice versa. By contrast, the
physical design shows the actual system components and specifies information like
each device’s brand and model number, processor speed and type, installed memory
size, and hard disk read/write speeds and size.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.102

For example, the architects could recognize the need for a user authentication
capability. They represent this need in the logical design by a conceptual box labeled
“user authentication server”. In the physical design, however, this conceptual server
may actually be grouped together with other needs. Jointly these needs are supported
by only one shared physical server, or alternatively the one conceptual server might be
implemented as an interconnected cluster of several physical servers.

At this stage, the logical system design is complete and stable but the physical design is
expected to continue to evolve until the system delivery and beyond. The remainder of
this section describes the logical design. Physical design decisions are reflected in this
logical design description where (a) they are relevant to understanding the test issues,
(b) the physical decisions are known and (c) they appear reasonably solid.

The purpose in incorporating elements of the physical implementation into this logical
design is to provide enough detail to adequately plan the performance testing. [For the
purpose of this exercise, you can assume that a performance test strategy based on the
following description of the logical design will work with any specific physical
implementation of that design. This assumption is convenient in a book or a classroom
but may be unwarranted in your particular organization.] Three questions that we (the
performance testers) will need to consider:

• How much architecture detail do we want or need to know in order to test system
performance?

• In which areas do we need more precision, accuracy and confidence in the

quality of the information available? In which areas are we indifferent? (In the
latter areas, the success of performance testing is only loosely related or
unrelated to the information quality.)

• How do we accommodate uncertainty and volatility while planning for the

performance test?

o What is the impact on the test plan of architecture details that are not yet
decided and of decisions that may be revised?

o In which areas of the architecture are lack of details or possible later
changes most likely to impact the performance test?

o In which areas of the architecture are lack of details or possible later
changes least likely to impact the performance test?

For the remainder of this Section 2.B, the term “server” will be used to mean a logical

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.103

server, not necessarily a physical one, unless otherwise stated.

B.1.3 Design Review and Validation

The scope of the performance testing project does not include a critique by the testers
of the performance implications of the system design and infrastructure decisions.
(Those fools! We testers could tell the architects a thing or two.)

A group of experienced architects were asked to comment on the system design. Their
feedback is summarized later (in section B.10.4).

Users and managers who are familiar with the existing systems (i.e., those being
replaced), have provided an evaluation of the current quality of service in Section A.11.
Some observers believe this history of problems is irrelevant as the systems are being
replaced – the new systems will presumably have a new set of problems. Other
observers disagree – they believe the prior history could be a good predictor of future
behavior. (Which group of observers do you think are right? Under what circumstances,
and why?)

B.2 DESIGNING FOR HIGH AVAILABILITY

The term high availability refers to the ability of a multi-server site to withstand hardware
or software outages that occur on the site’s individual devices. These outages can be
planned or unplanned. An example of a planned outage is taking a server down to
perform a software update. While the server is down for the software maintenance, the
rest of the site stays online and services users. An example of an unplanned outage is a
catastrophic server failure. In this case, the rest of the site should stay online providing
services to users because the processes failed over to the remaining servers in the
cluster. The architecture is designed to protect the data and keep the site up and
running.

B.2.1 Designed-In Redundancy

The system will use multiple devices such as servers and routers, with each logical
device dedicated to providing a specific capability (also called a function, service or tier).
Each tier can be changed and scaled independently of the other tiers, making the entire
infrastructure more robust and more scalable.

The logical architecture therefore utilizes several dedicated-function servers. To

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.104

increase reliability, at least two interchangeable physical devices (usually servers or
routers) are assigned to each capability in parallel. In the physical implementation,
these numerous logical servers actually may be hosted on a smaller number of large
physical servers, without compromising the redundancy and reliability sought in the
logical architecture.

B.2.2 Designed-In Scalability

The architects claim that scalability has been allowed for throughput the system design.
For example, tables and databases can expand to many times their current sizes
without address and indexing limitations.

Additional devices can be added to live clusters and automatically begin sharing the
load without disrupting on-going activity. The bandwidth of links can be increased as
necessary, and telecom devices like switches are all upgradeable.

Initially, each server is intended to have a single processor. However, the flexibility has
been left in the budget to upgrade a few selected servers to dual-processor machines or
to double their memory, if necessary, depending on the results of the performance
testing.

B.2.3 Clustering and Fail-Over

As the system is mission-critical, one design goal is to host the applications on a flexible
platform that provides scalability, reliability, and availability. Clustering helps provide a
solid infrastructure on which to deploy the applications with confidence, satisfying the
customer demands. Clustering provides the means to distribute work loads across
multiple servers with load balancing, and fail-over capability for application software
processing (such as order entry), networks and databases.
The servers in the cluster are intended to fail-over, that is, to back each other up as
necessary without a loss of functionality. In the event that one server is disabled, the
overall system should remain operational, even if it provides a degraded, slower level of
performance to the users until full capability can be restored.

B.2.4 Geographic Dispersion

While most of the infrastructure will be physically located at the headquarters, there are
also two other sites. One is a remote satellite office in the Los Angeles metropolitan
area, where about 10% of the staff works. These people need to be connected with their

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.105

peers at headquarters, which is some miles away.

The other remote site is a second, work-sharing web site in New York. This East Coast
location was selected because (1) it provides an alternative access to the Internet
backbone, thus increasing reliability, and (2) it will improve performance for East Coat
and European customers. The web traffic to and from external customers and suppliers
is intended to be split approximately equally between these two East and West Coast
web sites, while the Los Angeles locations will handle all the internal staff demands (on
the Intranet).

B.2.5 Locations and Assignments of the Servers

Following the architecture principles expressed earlier, each logical server will be
dedicated to a specialized use and coupled to another redundant, load-sharing server
that provides the same functions and services.

The book club anticipates that several servers will be deployed on the West Cost. The
logical server configuration at the Los Angeles headquarters site will include dual
servers for each function or service, such as the database service and the printing
service.

Another pair of servers will be located at the remote satellite office, which is also on the
West Coast, to mange the local operations of that office.

The East Coast architecture is a scaled-down version of the West Coast headquarters’
architecture, with the major exceptions that there is no need for a LAN on the East
Coast, and there is no remote office on the East Coast.

This configuration may change as the system design is refined, or to balance and tune
the system, or when the system load changes.

B.3 MAJOR TIERS AND WORK LOAD DISTRIBUTION

The site’s multi-tiered architecture is physically divided into two main tiers, the front-end
and the back-end. The clustered front-end provides the core web services such as
Microsoft’s Internet Information Services (IIS). The clustered back-end provides
application and database services.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.106

B.3.1 The Front-End

We saw earlier that the site plans to use multiple servers to provide Internet access and
respond to requests from users. These front-end servers provide web services (using
IIS), serve HTML, XML and ASP pages, execute objects called from ASP pages, and so
forth.

The front-end tier of the site includes a primary domain controller (PDC), security
services, a proxy service, a domain name service (DNS), e-mail and fax services, and a
web content staging service. Each of these services is supported by its own logical
server.

The PDC is a server that maintains a read-write directory of user accounts and security
information. The PDC authenticates usernames and passwords when members log into
the network. Members only have to log into one domain to access all resources in the
network. A backup domain controller (BDC) will be provided so that the primary domain
controller is not a potential single point of failure.

The DNS service resolves the private addresses for the site: addresses of the individual
servers on the private network are stored in the DNS database.

The staging service provides temporary stages to test new or revised web pages before
they are deployed into the live operation.

The front-end also provides security services such as firewalls.

All Internet access to the back-end must pass through the front-end. All services that
are not essential for providing web services are turned off on the front-end servers to
prevent unnecessary resource usage and to remove possible attack points. For
example, because FTP and SMTP services are not provided as part of the service
offering for the front-end servers, these services are either turned off or not installed on
the front-end servers. Everything in the front-end is located inside the firewalls.

B.3.2 The Back-End

While all Internet access to the back-end must pass through the front-end, other
internally controlled services access the back-end directly. These include the voice
telephone service (which manages the external and internal voice phone access, the
Intranet (a local area network or LAN), the remote satellite office service (a wide area
network or WAN) and the wireless service (which manages the wireless devices), are
connected directly to the back-end.

http://www.webopedia.com/TERM/P/server.html
http://www.webopedia.com/TERM/P/read_write.html
http://www.webopedia.com/TERM/P/authentication.html
http://www.webopedia.com/TERM/P/username.html
http://www.webopedia.com/TERM/P/password.html
http://www.webopedia.com/TERM/P/log_on.html
http://www.webopedia.com/TERM/P/domain.html

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.107

Back-end servers run in a cluster and provide data services (databases and file shares)
for the site, plus all other services not provided by the front-end. The back-end cluster is
configured in active-to-active mode.

The back-end cluster provides fail-over capability for services running on the cluster. If
one of the servers goes down, due to hardware failure, planned maintenance or any
other reason, the other servers in the cluster immediately take over the services of the
downed server. The failure of a server does not cause failure of the data services or
interruption in service. When the downed server is brought back online, it resumes
delivering data services.

The data for both the database and the web content is further protected by being stored
on a RAID disk array. (RAID means redundant array of independent disks.) In the event
that a hard disk fails, the data will continue to be available, and a functioning hard disk
can be hot swapped into the array with no interruption in service.

The back-end servers send periodic messages, called heartbeats, to each other to
detect failed applications or servers. The heartbeats are sent on a dedicated network,
using network interface cards (NICs) dedicated to this purpose. In the event that one
server detects a heartbeat network communication failure, it requests verification of the
cluster state. If another server does not respond, ownership of resources (such as disk
drives and Internet Protocol (IP) addresses) is transferred from a failed server to a
surviving server. It then restarts the failed server's work load on the surviving server. If
an individual application fails (but the server does not), a server cluster will typically try
to restart the application on the same server. If that fails, it moves the application's
resources and restarts it on the other server.

B.3.4 Load Balancing

Load balancing software (or possibly hardware) will automatically share and balance the
load among the servers. At the headquarters location it will route transactions between
the application servers, route queries between the database servers, and route print
requests between the print servers in order to optimize performance. It is anticipated
that no extra add-on load balancing tool will be utilized; the balancing will be done by
the built-in capabilities of the server operating system, though this decision has not
become final yet. If however this load balancing capability servers is provided by
hardware, a separate device is expected to be physically located upstream in the work
flow, prior to the devices being balanced.

B.3.4.1 Network Load Balancing for the Front-End

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.108

With network load balancing (NLB), the web servers work together in a cluster to handle
the web traffic. NLB is configured on each server in the cluster to respond to the same
virtual IP address and domain name. The scalability and load balancing occurs by the
primary domain controller directing resource requests across the front-end servers to
best balance the load for the site. The load-balancing algorithm determines which server
actually responds to a user request.

When the traffic increases beyond the capacity of the site, a new front-end server can
be configured with the NLB settings. When the new front-end server is booted up on the
network, it will dynamically join the existing NLB cluster and immediately begin sharing
the load with the other front-end servers.

When the NLB detects a server that is not responding to network requests, it removes it
from the cluster. The remaining nodes pick up the load of the server that is down, to
keep the site alive.

B.4 THE WEB SITES

B.4.1 The Primary Web Site

At the primary site in the Los Angeles headquarters, the web servers will be connected
to routers, which in turn connect to the Internet through an OC-48 high-capacity data
link with the bandwidth of 2.4 gigabits per second. This is sufficient capacity to
accommodate up to 300 Web sessions (assuming each requires 1 megabit per second
or mbps bandwidth), 300 simultaneous telephone calls (each requiring 128 kbps
bandwidth for VoIP technology), and 300 Web dial-up sessions using 56 kbps modems,
assuming no data compression technology is used, with an additional unused capacity
remaining of 2 gbps for peak surges in demand and for internal data transfers, e.g., for
data mirroring. Though only one OC-48 data link is leased, the telecom carrier
automatically provides a built-in hot back-up for this link.

The book club expects that the web servers will be accessed from a variety of browsers
on a variety of remote platforms.

There will be firewalls and other security functions on the web servers which may slow
their performance. (See the later section B.9, entitled: “Security Considerations”.)

B.4.2 Providing Web Services

The front-end web servers deliver the same web content and share the work load,

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.109

responding to HTTP requests and distributing web content. User requests are made
using a URL that all of the front-end servers can respond to. The front-end servers
access the Web site content data located on the back-end cluster file share service.

All objects necessary to provide Web services are installed and registered on each
front-end server. These include objects that are called from ASP pages. ASP pages for
the site can either be loaded on the front-end servers’ local disks, or kept on the back-
end cluster file share service.

B.4.3 Proxy Servers

These servers sit between the client applications, such as the web browser, and the real
web servers. A proxy server intercepts all requests to the real server to see if it can fulfill
the requests itself. If not, it forwards the request to the real server. A proxy server can
dramatically improve performance for groups of users, because it saves the results of all
requests for a certain amount of time. To improve security, the proxy servers will also be
used to filter requests.

B.4.4 Web Databases

The web servers will have their own databases, physically located on these servers, so
they are not totally dependent on the database servers. These web databases will
contain redundant copies of the same data and will be used to store frequently
downloaded data, such as FAQs, and to help isolate the web site visitors from the
system users inside the book club.

The web server databases will not contain all the data needed to answer queries or
process orders, so these servers will need to access the database servers for some
data. Although the web servers are physically connected to the database servers, some
of the confidential company data on the internal databases is intended to be essentially
invisible to web visitors for security reasons -- in other words, this data cannot be
accessed by the web servers.

B.4.5 Location of Web Content Storage

Web site content (HTML, ASP pages, and so forth) is stored on the back-end clusters
instead of local disks on each of the front-end servers. This is done because:

• Using a RAID disk array makes the data more available.

• In the event of a server cluster node failure, the file share service can fail-over to a

http://www.webopedia.com/TERM/P/server.htm
http://www.webopedia.com/TERM/P/client.htm
http://www.webopedia.com/TERM/P/browser.htm

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.110

remaining server.

• It is easier to manage site content and keep it synchronized when it is located in one
place rather than distributed across the local disks on each front-end server.

B.4.6 The Secondary Web Site

The secondary web site in New York will have six logical servers, with two dedicated to
servicing the web traffic, two to the databases and two for applications processing.
These will mirror their Los Angeles counterparts as appropriate for the functions they
support, and will be connected on their own LAN.

B.5 THE DATA ARCHITECTURE

The database services are provided by Oracle database software running on the server
cluster in active-to-active mode, meaning that dual database servers provide services
rather than having one server to provide all the services and the other wait on hot
standby (active-to-passive mode).

B.5.1 The Data Content

The main types of data stored and used by the system are:

• Orders (tracks orders from customers; billing)

• Catalog (all the books the club offers)

• Inventory (all the products on hand)

• Customers (all the customers and customer profiles; members are simply
customers who choose to enroll in the club)

• Vendors including vendor orders (all the orders the club makes to its suppliers)

B.5.2 Data Conversion

A new database is currently being converted from other existing databases of book club
members, orders and books. The senior managers have identified the database
conversion as a complex, high-risk activity, and they are concerned that after the

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.111

conversion several cycles of database tuning may be needed before the system
performance goals are met.

B.5.3 Database Size

When it has been converted from existing files, the database will contain approximately
100,000 active members. (Active members are those who have notified the club of their
desire to receive e-mails with promotional announcements or monthly catalogs of
books, or who have ordered a book within the last year. The typical member’s levels of
activity, e.g., orders per month, are provided later in Section 2.E.) The database will
also contain another 200,000 inactive people who have ordered at least one book in the
past, but not recently, or who have expressed an interest in the book club. The data on
these other, inactive people is used in marketing campaigns. People are deleted from
the database after three years with no activity.

B.5.4 The Database Servers

While the technology exists to support real-time concurrent updates to multiple
database servers, the designers have decided that its costs and risks do not justify its
use except in the most critical business transactions. The database servers will use
RAID (redundant disk) technology, so that each database server in itself has redundant
copies of the data.

A complete back-up copy of the database will be taken once every night. During this
back-up process, which is expected to be completed within a period of 30 minutes, user
response times may be slow. Few users are expected at the time, probably 3.00 am, so
that slow responses are a minor issue. No guarantees have been made to the user
community as to the worst-case performance of the system in this situation.
Nevertheless, since the managers want to know if the user response times are likely to
be extremely slow during the back-up, measuring those response times is within the
scope of this project.

B.5.5 Data Distribution and Mirroring

Each of the database servers will contain a partial copy of the full database, so within
the duplicated portion the same data is stored on the other database servers. Data
updates will be made routinely (but not necessarily concurrently or immediately) to all
copies of the database, and these copies will be periodically and automatically
monitored for consistency by the database management system (DBMS). This
monitoring in itself requires significant message traffic among the database sites.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.112

The mirrored or duplicated data includes the full product (book) catalog but not all
products’ current inventory levels, the full set of members’ basic data (account number,
name, etc.), and their currently active orders (i.e., those about to be picked and
shipped).

The objective of mirroring is to improve data accessibility, back-up and load distribution,
by providing more than one source of data, which in turn should improve performance.
Though there are trade-offs. Employing a single-site integrated database instead of
distributed ones does have the advantage of easier centralized control. In a
decentralized environment, the proliferation of distributed databases can mean a lack of
consistent, timely, consolidated information at the corporate level. However, the reliance
on one site compromises accessibility, performance, and local control over information.
Thus the DBAs have made the decision to distribute and mirror the data. They have
documented the specifics of how the data will be distributed and accessed in a thick and
not especially user friendly document. The summary provided here will just have to be
enough to plan the performance test.

Data storage for the web site is managed by two servers in a cluster connected to a
shared RAID disk array. The server cluster provides availability in the event of a server
failure, and the RAID array provides availability in the event of a disk failure. The disk
technology provided can detect potential disk failures before they happen. If a disk
failure is predicted by the system, the failing disk can be hot swapped out of the RAID
array and replaced with no loss of service. RAID arrays can be implemented in software
or hardware for increased data access performance.

B.6 NETWORKS AND COMMUNICATIONS

B.6.1 The Network Topology at Headquarters

While book club members and visitors can access the system only through the web site,
the internal part of system used by the book club employees will operate on an Intranet
(a private, internal client/server network). The Los Angles area will have approximately
250 users on the Intranet, with 225 in fixed locations with one workstation per user, and
25 mobile wireless users with hand-held devices.

Of the 225 fixed-location workstations, 200 will be physically located at the book club
headquarters, which is an office building in Los Angeles, and will be on a local area
network (LAN). The other 25 fixed-location workstations will be located at a satellite

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.113

office, which is several miles away and which will be connected to the headquarters
building by a wide area network (WAN). The 25 wireless devices will be used in the
warehouse, which is attached to the Los Angeles headquarters building.

B.6.2 Network Interface Cards (NICs)

Each server has two 100-Mbps Ethernet network interface cards (NICs). The TCP/IP
protocol is used throughout the site.

In the back-end servers running in a cluster, one NIC is connected to a private network
providing access to the other servers through a 100-Mbps switch. The other NIC
provides the cluster heartbeat mechanism and is connected to the other cluster server
by an Ethernet cross-over cable. In the front-end servers providing services, one NIC is
connected to a 100-Mbps switch that is connected to a network that routes to the
Internet.

B.6.3 Utilization of Network Technologies

Within the headquarters building, the fixed-location clients and servers will be connected
by a fast Ethernet local area network (LAN), rated at 100 Mbps. If the performance
measurements indicate that the LAN is a major bottleneck, the speed of the LAN could
possibly be increased to a gigabit per second (using gigabit Ethernet). However, an
allowance for this contingency has not been included in the project budget.

The web and CTI (telephone) servers will be connected to the OC-48 data link, which
can be shared by both the web and voice telephone traffic. As mentioned earlier, this
link has a rated capacity of 2.4 gigabits per second. The overhead for protocol
conversions from external networks, such as SONET to internal Ethernet LAN, are
assumed not to be a significant issue and will not be measured as part of this project.

Internally within the secondary web site and also within the L.A. satellite office building,
the clients and servers will be connected by traditional Ethernet LANs, rated at 100
Mbps.

The wide area network (WAN) connecting the headquarters and the satellite office will
utilize dedicated T1 lines.

B.6.4 The E-Mail and Fax Servers

These provide e-mail and fax services to the organization’s staff members.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.114

B.6.5 The Voice Telephone Servers

The voice telephone servers will be used to coordinate incoming calls with customers’
profiles, so that the person answering a call has ready access to the caller’s account
status. For example, a customer’s data will be retrieved automatically, based on the
telephone number of an incoming call, and displayed on the user’s screen as he or she
answers the call. The voice telephone service will be supported by call center software
which resides on the voice servers.

Voice traffic will use voice-over-IP (VoIP) technology, where conversations are
communicated through digitized streams of TCP/IP data packets.

The voice service, for both incoming and outgoing calls, will be handled by the same
OC-48 data link that handles the web service.

B.6.6 The Wireless Routers or Servers

The wireless routers or servers will be used to communicate with the hand-held devices
in the warehouse. These devices will help direct the order fulfillment, specifically the
picking, packing and shipping of books.

In the future, the hand-held devices will be shared with other application systems in
addition to the order processing system. The main other application is expected to be
inventory management, where the hand-held devices will be used to take and report
inventory counts and report out-of-stock conditions directly from the warehouse floor. A
wireless-based inventory management system will be implemented, but not until at least
9 months after the order processing system goes live. The inventory system is expected
to account for approximately 33% of the total wireless message traffic. (The order
processing system will account for the other 67%.)

The system designers have not worked with wireless technology before.

B.6.6 The West Coast Remote Location Servers

Two more servers will be situated at the satellite office in the Los Angeles metropolitan
area. These servers will support a local area network for the 25 client workstations in
the satellite office, and will connect the satellite office to headquarters by a wide area
network. The business group which is located at the satellite office, and which is the
main group supported by these servers, is the catalog publishing group. The role of this
group is described in other section A.4 of this document, Part 1 of the case study.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.115

B.7 OTHER SUBSYSTEM AND COMPONENT DESCRIPTIONS

B.7.1 The Application Servers

A full set of the application systems will reside on each of the two application servers, so
that both servers will have the capability to support all the system features and process
all transactions. The set of applications includes the billing, inventory management and
purchasing systems (purchasing books from publishers and distributors).

B.7.2 The Print Servers

The print servers are connected to eight high speed laser printers, which will be shared
by several users, and which are located in the work areas close to their main intended
users. These printers are used to print in high volume the paper copies of the book club
catalog. Although the catalog is available for on-line browsing, printed copies are
available on request. Approximately 5,000 paper copies of the 300-page catalog are
printed and distributed per month. The printers are also used for a variety of internal
business reports.

In addition, dedicated local printers will be directly connected to individual personal
computers and normally will not be shared across the network. Measuring the print
times on these local printers has been declared to be outside the scope of this test
project. The impact of the localized printing on overall network performance is believed
to be minimal.

B.7.2.1 Print Out-Sourcing

The book club managers have debated out-sourcing the catalog printing, with no
consensus likely anytime soon. One group argues that a specialized print contractor
would be faster and cheaper. Another group argues that for the foreseeable future the
catalogs are critical to the business and thus cannot be outsourced.

If the printing is outsourced, the master copy of the catalog could be delivered to the
vendor electronically or by courier service in the form of a hard disk.

B.7.3 The Support Software

The decision has been made to use Windows XP on both the servers and on the
clients.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.116

The database management software used by the book club will be Oracle 9i.

The web servers will run Apache software to service Internet traffic.

The routers will run Cisco’s IOS operating system.

The e-mail services will use Microsoft’s Internet Explorer browser and Outlook e-mail
software.

B.8 SECURITY CONSIDERATIONS

B.8.1 IP Addresses

For security reasons, the servers all have two Ethernet adapters, each with different IP
addressing. The servers communicate with each other on a private network, and only
the front-end servers have IP addresses that are publicly accessible. To prevent
malicious attacks, this architecture prevents direct access from the public network to the
servers containing site data. It is possible to have just one Ethernet adapter in all of the
front-end servers, and provide connectivity to the back-end servers, if the servers are all
configured with publicly-accessible IP addresses. However, this would expose the site
data (on the back-end servers) to attacks from the public network. DNS is used for all
name resolution and there is a DNS server running in the site specifically to handle
name resolution for the privately addressed interfaces. The only publicly accessible IP
address on any of the servers in this site is the virtual IP address that the front-end
servers respond to.

B.8.2 Firewalls

A firewall can be implemented as software or hardware, the latter in the form of a self-
contained unit. are relatively inexpensive and ubiquitous, and thus can and should be
placed at several points in the network topology. The decisions on firewall placement
are not final yet. Possibly the web sites will be outside the firewall(s) and the web
services behind them. The web services utilize the databases, which are definitely
behind the firewalls.

B.8.3 Trade-offs of Security and Performance

Security controls like encryption are expensive, as they degrade performance, require
more resources to run, or both. Security controls are implemented in the parts of the

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.117

application that asks for user passwords and credit cards, but are not necessary for a
catalog page look-up. The security policy guiding the ordering system is as follows: only
user-sensitive financial data is protected.

B.9 SCALABILITY CONSIDERATIONS

B.9.1 Application Processing Scalability

The application software developers say that they have written scalability capabilities
into their software. They have attempted to exploit major two trends in the advancement
of processor hardware: (1) the move to 64-bit computing, and (2) the move to highly
parallel in-chip processing. Future chip throughput increases are expected to come not
so much from faster clock rates, which have been the primary source of semiconductor
speed increases over the last 30 years, but instead from increasing the parallel activities
on a chip. Application software must be designed specifically to take advantage of 64-bit
computing and parallel hardware processing -- the scalability does not happen
automatically. (As an aside: how would you test this scalability works?)

B.9.2 Database Scalability

Xxx

B.9.3 Network Scalability

xxx

B.10 SYSTEM IMPLEMENTATION

B.10.1 Re-Use of the Existing Equipment

The parts of existing infrastructure which can be re-used (equipment and facilities which
are already in place and support the existing applications), will be integrated into this
new environment. The equipment which will be carried over to the new operating
environment has already been included and counted in the inventory of equipment for
the new system.

The parts of the existing infrastructure which cannot be re-used, such as older clients
and servers, will be discarded after the new environment is operational.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.118

There are no hand-held devices or wireless systems currently being used by the book
club.

B.10.2 The System Implementation Strategy

After considerable debate, the managers have decided not to migrate to the new order
processing system in a gradual series of phases. Instead, they plan a “flash cut” one-
time transition from the existing systems to the new one: the old systems will be
switched off, data transferred and the new system switched on within a period of
minutes. This avoids the need to run mixes of the old and new systems in parallel
during a cut-over period.

The implementation team plans one or more trial runs of the conversion in order to
mitigate the risks, and is developing a roll-back contingency plan in case the transition
does not work.

B.10.3 Physical Installation and Set-Up of the Equipment

Our performance test team is responsible for installing, configuring and checking all
equipment used in the test lab.

Our performance test team should not have to test that equipment has been correctly
installed and configured in the live environment, even if we choose to do some testing in
this live environment. (For example, we could test after this equipment has been
installed but before the new system is enabled.)

An experienced contractor will install, wire, set up and configure the computer and
network equipment needed for the new system. This contractor will test and confirm that
this equipment has been installed and works, and also will confirm that the support
software, such as Windows XP and device drivers, has been installed correctly.

B.11 ARCHITECTURE EVALUATION

B.11.1 Review History

A group of experienced architects has reviewed the proposed system architecture and
concluded that it should be able to support the system’s functional requirements. They
also believe that the equipment ordered for the site is probably sufficient to handle the
work load, though this is based more on a high-level comparison with other similar sites
rather than an in-depth analysis.

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.119

B.11.2 Likely Performance Vulnerabilities

The managers of the book club business groups have compiled this list of the perceived
threats to the new system performing adequately.

The likely sources of spikes in demand on the system from external users (non-
employees) are responses to promotions in the first hours after they are broadcast,
requests to download the e-catalogue in the first hours after it becomes available,
external events outside the book club’s control like Oprah blessing a book, and denial of
service attacks. Heavy internal demand (caused by book club employees) and thus
contention for resources are likely to occur when printing the paper version of the
catalogue to mail to customers.

Uses which are resource-intensive, e.g., likely to consume a high level of system
resources per event include book searches, data mining (this not part of the order entry
system, but it runs on the same shared servers), downloading graphics and video clips
of authors and books, the ad hoc management reporting and the database backup (the
nightly “crawl”).

System uses which are particularly timing sensitive include the call center phone calls,
the database access for phone call support, and senior management and VIP queries
(especially high priority ones).

Other background applications share the same infrastructure and may interfere or
compete significantly for system resources. The biggest sources of contention are likely
to be the billing system and spikes in e-mail traffic. Since these business managers
have no knowledge of the system internals, vulnerabilities caused by inadvertently
designed-in bottlenecks or poor implementation (e.g., inefficiently written software code)
are not addressed in this section. (See the architecture evaluation performed by a
review team of experienced architects, later in the Description of the Situation, Section
2.B.)

B.11.3 Possible Bottlenecks

The architects have identified some possible bottlenecks, based on their review of the
system design on paper. None of these possibilities may actually become bottlenecks,
and eliminating them will incur high additional costs for hardware, networks, data
storage, software and support. The executives want to right-size, not over-engineer, and
are not convinced these costs are necessary. They have decided to wait until the
performance test confirms the problems are real before spending more money on

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.120

capacity. The possible bottlenecks are:

a) The distributed database, which is shared across multiple applications in a data-
rich, highly data-dependent environment.

b) The nightly database back-up, when other data-related transactions may slow to

a crawl.

c) Shared servers across multiple applications. For example, during a bill
processing cycle the billing system may pre-empt the ordering system on the
application servers.

d) The printers, which may not be hard-wired directly to the print servers, but on the

local area network (LAN). The reviewers had a split opinion about the printers.
Some believe that the monthly catalog printing will be a bottleneck. Others
disagree, pointing out that the electronic print file has to be downloaded to the
printers only once, regardless of how many thousands of copies will be printed.

e) The voice or computer-telephony interface (CTI) servers also may be on the

LAN, leading to the possibility of heavy telephone traffic interfering with other
work and vice versa.

f) The web site access and the voice call center apparently share the same

telecommunications lines.

g) Security functions, such as firewalls, digital certificates, and encryption of
sensitive data (e.g., credit card transactions), are likely to be resource-intensive
but apparently are not supported by a dedicated server. Separate front-end proxy
servers, firewalls, e-mail software, etc.; reduce the load on the server.

Every system contains bottlenecks. This number of possibilities (eight are listed above)
is not unusual, and is not an indicator of an incompetent design. No opinion or
information on this topic of possible bottlenecks is available from the system architects
and developers, other than they are confident their design will work.

B.11.4 Test Suggestions from the Technical Community

The technical professionals (system designers, DBAs, web site administrators, etc.)
have suggested that the performance test team tackle the following questions. (Caution:
some of the requestors may not know as much about performance or testing as they

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.121

think.)

B.10.4.1 Database Performance

In database test mode, have individual tables and files been allocated sufficient disk
storage to accommodate the anticipated volume of production data?

On the web servers, do active temporary data areas (such as cookie and shopping cart
storage) become highly fragmented over short periods of time?

If data is not being replicated, then is the DBMS able to successfully roll back a
transaction that spans several servers when one of the servers is unable to commit its
portion of the transaction?

Splitting the data among distributed databases is likely to generate more network traffic.
Will splitting the data worsen the performance of the web site due to increased network
congestion?

B.10.4.2 Web Site Performance

Does the load balancer spread the work load effectively and not compromise the
integrity of the web site’s functionality? (This is especially important for transactions that
require the user to enter data on more than one web page in order to complete a
transaction.)

Are web visitors being correctly re-routed to the most appropriate mirror?

What happens if the primary site goes down?

B.10.4.3 Maintainability

Can one or more of the servers in any functional tier be “hot swapped”, or additional
servers added, without having to temporarily take the site off-line?

Can a new version of system software or application software be implemented without
taking the site off-line? (Implementing standard housekeeping procedures on a 24x7
web system is more challenging and potentially more prone to error than a traditional
client/server or mainframe system.)

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.122

Exercise 2.3: Specifying the Performance Requirements

Introduction

Testers commonly face untestable requirements {e.g., vague and unspecific,
ambiguous, not measurable, etc.). They may have no choice but to refine or re-work
them so the requirements are usable. This can be a time-consuming, politically charged
and thankless task.

The purpose of this exercise is to develop a workable set of performance requirements
by refining the set provided earlier (see section 2.A, part A.10). These existing
requirements have been deemed inadequate. For brevity, develop only a subset of
requirements, numbering three testable requirements in all.

Instructions

First, re-visit and review again the business objectives from part A.8 and performance
goals from A.10.

Second, answer these questions:

(2.3.1) Where do we need to set goals? Performance goals could be set for a very large
of situations. Which 5% of the performance envelope is most worth testing, monitoring
and caring about? Put another way, which 5% of the system behaviors are in areas
where the performance requirements are worth defining? It helps to address the
following subsidiary questions as stepping stones to deciding where to set the goals:

(2.3.1.1) Which users have priority, in terms of receiving the best performance?

(2.3.1.2) Which types of work have priority?

(2.3.1.3) Which system uses are likely to cause the most user dissatisfaction or

business losses if performance is poor?

(2.3.2) How aggressive do the service levels need to be, i.e., the goals that are user-
visible? (Service levels are goals that are meaningful to users. Internal disk utilization,
for example, is not user-visible.) It helps to address these questions:

(2.3.2.1) Who are our main competitors? How do customers differentiate among us

and the remainder of the competition?

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.123

(2.3.2.2) How do customers and potential customers evaluate the quality of service of

on-line book clubs, and other competitors (e.g., retailers and wholesalers)?

(2.3.2.3) What are the measures or metrics by which the book club is compared with

other book providers -- and thus competes for customers?

(2.3.2.4) In comparative evaluation with competitors, in which performance-related

areas do we (a) need to beat the competitors, (b) meet them or (c) do not
care as performance is irrelevant? (This overlaps the prior questions to some
extent.)

(2.3.2.5) If we are not in a competitive situation, what stated goals and unstated

expectations are there for user productivity?

(2.3.3) Under what demands do these service levels need to be met?

(2.3.3.1) Under what expected load volumes do they need to be met?

(2.3.3.2) With what other concurrent demands (overheads and background noise)
that are imposed on the shared resources?

(2.3.3.3) What rates of growth does the system need to accommodate?

(2.3.4) With what resources (and therefore, at what cost) must the service levels be
met?

(2.3.4.1) What types of resources does the system need to run on? (Do not bother

to list these if they are obvious.)

(2.3.4.2) What quantities of these resources are normally available to the system?

(2.3.4.3) If you can identify them, which resources do you believe are the most

important or critical to the success of the operations?
 Under typical load?
 Under peak load?

(2.3.4.4) What are the desired norms for resource utilization, for each critical

resource?
 Under typical load?

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.124

 Under peak load?

(2.3.5) What are the desired norms for reserve or spare capacity, for each critical
resource?

 Under typical load?
 Under peak load?

(2.3.xx) Are there any exceptions to the performance goals? For example, should the
normal response time expectations be ignored during the period of the nightly database
back-up?

(2.3.6) Screen the original set of performance goals and discard any irrelevant ones.

(2.3.1) Re-write each of the remaining original goals so it is significant, focused, correct

and testable.

(2.3.2) Review your revised set of goals. Are there important aspects that are not

adequately covered, so that additional goals should be added? What are these
new goals?

Third, document three significant performance requirements. See Appendix G for a
suggested format for your answers.

We will visit some of these issues again in later exercises as we refine our answers,
specifically 2.8 (calculating the load) and 2.12 (developing test scenarios). This overlap
means there is partial redundancy, which is deliberate in order to examine the issues
from more than perspective.

Exercise 2.4: Performing the Initial Impact Assessment

Introduction

The purpose of this exercise is to perform an initial assessment (IIA) of the significance
of the likely performance issues, and decide whether a formal performance project is
justified.

To make the exercise manageable, we will assess only one part of the system – the
local area network (LAN) which supports the Intranet at the Los Angeles headquarters.
Normally, on the job we’d first ascertain whether the LAN is the best place to begin. We
want to begin with the system component that is the easiest to analyze and also is likely

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.125

to be a bottleneck. Usually impact assessments have a broader scope and examine all
areas where the impact is likely to be non-trivial, not just one area such as the LAN. So
we’d also probably look at more than one area on the job, i.e., we might analyze the
web services and the database as well as the LAN.

Section 2.E provides the volumes of LAN traffic, and the transaction lengths for that
traffic.

Instructions

(2.4.1) Estimate the utilization of the LAN during for the average minute and for the
busiest minute of a peak hour.

• Estimate the LAN utilization in terms of bandwidth, i.e., by the percentage of the

theoretical maximum capacity that is used.

• Is the new system demand likely to have a material impact on the LAN? If so, the

organization should upgrade the LAN, or undertake a performance test or a
performance improvement project.

• Limit your analysis to the LAN for this exercise (to make the exercise

manageable within the time available).

• Review the simplifying assumptions below. These are intended to expedite your

calculations without introducing too much inaccuracy. Note that you are not
obliged to use these assumptions. Feel free to replace them with your own
assumptions.

• Any there any assumptions below that you question or feel uncomfortable with?

(2.4.2) For this exercise (which is a quick rough assessment), what transaction lengths
should we use?

• Should we use the average transaction lengths or the medians?

• When we proceed later to actually testing the LAN, should we continue to use

fixed-length transactions provided that their length is the same as the average (or
median) in live operation?

• Or should we test with a representative variety of transaction lengths, using a mix

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.126

with a profile that seems to match real life?

(2.4.3) Estimate the utilization of the LAN during periods of peak load (specifically
during the typical busiest minute of a peak hour). Determine which of these four
scenarios causes the largest load on the LAN under peak load:

(a) Announcement of a new e-catalog and the resulting orders.

(b) Monthly catalog printing.

(c) Database back-up.

(d) Database mining.

(2.4.4) What assumptions did you make, either beyond or in contradiction to the
simplifying assumptions below?

(2.4.5) Based on your analysis of the system’s impact at the LAN at the Los Angeles
headquarters, decide whether you should advise the senior managers to fund a
performance test for the new system.

(2.4.6) The architects and the design reviewers have debated whether fast Ethernet is
really needed, or traditional Ethernet will suffice. The former has a rated capacity of 100
Mbps, while the latter is rated at 10 Mbps and is cheaper. What is your opinion in this
debate, based on your IIA?

(2.4.7) Was it shrewd or foolish to focus this assessment on the LAN rather than some
other aspect of the integrated system, such as the web services or the database?

(2.4.7.1) Relatively, how easy is to analyze the LAN? How well do we understand

the LAN versus other aspects such as the web services, in terms of (a)
how the LAN is being used, (b) the underlying technology (how an
Ethernet LAN works) and (c) the common issues encountered by users
(LAN administrators)?

(2.4.7.2) How likely is it that the LAN will be a bottleneck or at the center of critical

performance issues for this system?

(2.4.7.3) How comfortable are we that we have developed a realistic model of the
LAN, with good predictability?

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.127

(2.4.7.4) How much did the simplifying assumptions compromise the outcome of

the IIA? In other words, what is the risk that these assumptions have led
us to the wrong conclusion?

(2.4.7.5) This question is optional – answer it only if you are knowledgeable about

LAN technology and operations. I gave you an apparently complex
situation here and then supplied assumptions that make the assessment
exercise relatively straightforward. Is there a better way to simplify the
situation? Can you recommend a better LAN model, i.e., a better set of
simplifying assumptions? To paraphrase Einstein, a model should be as
simple as possible but no more. If there is a better way, how do you
recommend we model (simplify) the situation?

(2.4.7.6) Are we being realistic? Is an upgrade of the LAN so straightforward,

inexpensive and quick that no impact assessment is needed? If so, is it is
more effective to simply skip this IIA and invest the avoided costs (from
bypassing the IIA) to blindly upgrade the LAN? This exercise revolves
around the LAN: you were asked to assess the need for performance
testing based on your estimate of the load impact on the LAN. A LAN
expert might immediately conclude – without doing an impact analysis –
that actually there is no need for performance testing. This is because, the
expert claims, LANs are so cheap to upgrade and so high in bandwidth
that even if there was a bandwidth problem, the testing process would be
far more expensive than simply fixing the problem after it becomes
manifest. Do you agree with the expert?

This set of questions (2.4.7) raises an important point about the effects of content. I use
exercises in this book that don't require deep knowledge of specific technologies, so you
and other readers can do them successfully. However, I don't know of any way to
develop content-free exercises. People who have the relevant knowledge will apply it,
while people who don't have any knowledge may be intimidated and confused. I have
not included tutorials on the underlying technologies, since good tutorials are widely
available on the Internet. Go there first if you are unfamiliar with the technologies.

Simplifying Assumptions

We need to make some simplifying assumptions in order to perform a quick
assessment. In this situation, the suggested assumptions are:

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.128

• For the moment, we will assume we can ignore the question of whether the new
system is able to meet its response time requirements (such as responding to
internal workstation queries within 2 seconds, 90% of the time or more), and
focus on the transaction throughput only.

• We will consider only the capacity of the LAN to handle the throughput, not the

capacity of other parts of the system such as the database servers and the web
servers.

o Do we have to assume here that the LAN will reach its maximum capacity

before other links or components such as the servers reach theirs? In
other words, if a bottleneck occurs as the load on the system grows, do
we need to assume that the limitation will happen first in the LAN? Under
what circumstances would this assumption be necessary?

o Are there variations of this exercise in which we do not have to assume

the LAN is the limiting factor if we intend to analyze the capacity of the
LAN only and no other parts of the system?

• Each interaction with the new ordering system normally includes both an input

and a response. Since we expect an input to be followed fairly rapidly by a
response, we can calculate the total traffic load on the network for each
transaction by simply adding together the lengths of the input message and the
response message for that transaction, as follows:

Type of Average Length per Median Length per
Transaction Transaction (KB) Transaction (KB)

Input Response Total Input Response Total

Book Search 0.1 16 16 0.1 32 32
Order Change 2 2 4 2 2 4

• It is more appropriate to use the average lengths and not the medians. (See

Appendix A for an explanation of mean or average, median and mode.)

• How dangerous is it to use a fixed length, regardless of whether that length is the

mean, median or mode? Is the earlier question about using the mean, median or
mode missing the point? Is the only credible way to model the LAN’s behavior to
simulate a representative mix of transactions of varying lengths, based on the
operational profile? Would the use of varying lengths produce an answer that is

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.129

sufficiently accurate to justify the extra effort?

• Can we safely simplify the problem by ignoring 90% of the transaction types
carried on the LAN?

o The LAN carries various types of transactions, such as book search

requests and results of order status queries, as part of the order entry and
fulfillment.

o Of these types of transactions, the most popular 10%, in terms of their

contribution to the total load on the LAN, account for 90% of the bits
carried, under both average and peak conditions. (By contrast, most of the
order entry and fulfillment transaction types – the other 90% -- are
infrequently used, and account for only 10% of the bit traffic for the
ordering system.)

o In other words, if we calculate the load contribution for each transaction by

multiplying its average length by the expected volume of that transaction
occurring within a time interval, the top 10% will predominate.

o The accuracy required in the load calculations for the initial impact

assessment does not have to be better than within plus or minus 15%.

o If we ignore the bottom 90% of the types of system transactions in this IIA.

Will or answer still be within the allowable margin of error?

o Better yet, can we merely add another 10% to the load calculated from the

predominant 10% of the ordering system transactions, and be confident
we have a highly accurate answer?

• The LAN also carries traffic that is not part of the ordering system. Is the impact

of the other systems which share the same infrastructure and also use the LAN,
especially the billing system, likely to be significant and thus cannot be ignored in
the IIA?

o What data do you need to answer this question?

o And what assumptions are you likely to have to make?

• Do the following assumptions help or hinder the analysis, or re they irrelevant? Is

II. The Full Case Study: Understanding the Situation

 Copyright © 2005 Collard & Company

 Case Study 1.130

each one reasonable?

o Under normal working conditions, the load on the LAN should not exceed

40% of the theoretical maximum capacity of the LAN, as measured over a
one-minute interval.

o Under peak demand conditions, the load on the LAN should not exceed

85% of the theoretical maximum capacity of the LAN, as measured over a
one-minute interval.

o The demand in the peak minute of an hour usually is 10% of the total

demand for that hour.

 Copyright © 2005 Collard & Company

 Case Study 1.131

III. DETERMINING THE PERFORMANCE TEST APPROACH

Introduction

Now that we have become familiar with the background and context, we need to identify
our overall approach to testing the system. We need to address whether to outsource
the testing, select the most appropriate test methods, establish the test focus and
coverage, and prepare the test work loads and the test environment. The next several
exercises examine how to perform these ctivities.

Exercise 2.5: Deciding Whether to Outsource

Instructions

Review the following lists of the advantages and disadvantages of outsourcing the
performance testing effort.

Decide whether, all in all, it is better to outsource or to test in-house, through these
steps:

(2.5.1) Review the following lists of outsourcing advantages and disadvantages,

and the outsourcing work sheets.

(2.5.2) Customize the outsourcing work sheets for this situation, by deleting any

points which are irrelevant and by adding any new relevant points which
have not been listed.

(2.5.3) Weight each remaining point with a score based on its relative importance

in this cultural and technical environment, on a scale from 1 (minor
significance) to 3 (critical).

(2.5.4) Assign a second score to each point on the lists, which represents the

degree to which the factor is an issue on this project, on a scale from 1
(minor significance) to 3 (critical).

(2.5.5) Multiply the first and second scores together for each point, and sum the

totals of the scores for (a) advantages and (b) disadvantages.

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.132

(2.5.6) Am I advocating an invalid use of mathematics here: multiplying

subjective factors together?

• Is multiplication the right formula? Should we add the numbers instead? What
formula if any would you use?

• Is the multiplication of numbers on ordinal scales mathematically meaningless?

• Even if meaningful, does multiplication bias against high magnitudes?

• Does this alternative work -- instead of calculating the magnitude, just select it

subjectively based on the other two numbers.

• Is there an advantage in that alternative approach, in that there is no pretense to
scientific rigor?

(2.5.7) Is it necessary or even helpful to fill out a table like the one I propose

here? Would you be more effective if we discuss the issues, identify the
risks and benefits, then make a decision based on how attractive the
benefits are and how well we can manage the risks? (Discussing the
issues often is the most important part, but it is missing from my earlier
description of the decision process.)

(2.5.8) Decide what conclusions if any you can derive from this quantitative

analysis. The results may provide insights into whether to outsource – or
may be numerical nonsense.

(2.5.9) Develop a justification for your decision, to either outsource or not.

Introduction

Many organizations are contracting out part or all of their testing efforts. This makes
sense, if the organization does not have sufficient internal resources or the expertise
internally for their testing projects. There are several valid reasons to outsource the
testing effort:

Testing is resource intensive, and the demand for testing is cyclical, with peaks
occurring when major systems are being implemented. It is more economical to staff on
a project-by-project basis than have a "standing army" waiting for the next war or test

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.133

(there's not much difference).

Specialized testing expertise (e.g., internationalization/localization testing, performance
and stress testing, or knowledge of a particular automated test tool) may be easier to
rent than to train and build internally.

Specialized test environments, equipment and facilities may be needed which are not
available internally.

External testers also can bring a more objective perspective to a system than the
insiders. If the internal team is pressured to meet a delivery deadline, or has lost some
of their political and intellectual independence, the presence of the outsiders will help to
balance the situation.

In addition, external testing may be required to certify products. VeriTest, for example,
has been chosen by Microsoft to certify that third-party products are compatible with
Windows. In accounting, a certified audit by definition can only be obtained from an
external source.

ADVANTAGES OF OUTSOURCING

• May be easier to outsource load testing than feature testing, because the vendor
does not need as much domain expertise as for functional testing. (This can be
dangerous, however, even in load testing.)

• Lower initial investment in tools and equipment.

• Lower project lead time (this is not guaranteed) -- do not have to learn tools,

acquire equipment, etc.

• Lower risk -- with the right vendor -- because of in-depth expertise.

• Another voice of advocacy (the vendor’s) to persuade senior managers and
users of the importance of load testing.

• Better scalability, because the vendor’s test lab has oodles of equipment and

virtual user licenses.

• More objectivity and credibility of the test results (maybe this is a bad sign, if
outsiders have more credibility than employees).

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.134

• If there is bad news to communicate (“it won’t work”), the vendor is the

messenger.

DISADVANTAGES OF OUTSOURCING

• Eventually with re-testing the accumulated vendor costs may be much higher
than in-house.

• Never get to build and establish the expertise in-house.

• Sometimes the lack of internal expertise in performance testing means the client

cannot competently question the vendor’s work.

• Vendors never understand a system and its infrastructure as well as the insiders.

• There is a possibility of us-versus-them conflicts.

• The potential re-use of internal testware is low, such as existing feature test
cases which could be adapted for load testing.

• There are potential issues of security and confidentiality.

• System probably will be migrated and re-tuned in the live environment after the

vendor’s testing, perhaps materially changing its performance characteristics.

• Friction at the turnover point from the external testers with their performance
claims, to the internal operations people who must meet the SLAs.

• Track record and history of problems. Many test outsourcing projects end in

dissatisfaction. Why is yours different?

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.135

OUTSOURCING WORK SHEETS

Advantages of Outsourcing
Importance
(*)

Presence
(**)

Combined
Score

 1. Lower initial investment

2. Shorter project elapsed time

3. Lower risk

4. Outsourcing vendor’s in-depth
expertise

4. Another voice of advocacy (the
outsourcing vendor’s)

5. Better scalability in the vendor’s test
lab

6. More objectivity and credibility of the
outsourced test results

7. Other advantage (name:)

8. Other advantage (name:)

Total scores

(*) Relative importance of this factor in this culture and environment, on a scale from 0
(irrelevant) to 3 (critical).

(**) Degree to which this factor is present in this project, on a scale from 0 (not present)
to 3 (pervasive).

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.136

Disadvantages of Outsourcing
Importance
(*)

Presence
(**)

Combined
Score

 1. Higher eventual costs

2. Failure to build and establish the
expertise in-house

3. Client does not have the competence
to question the vendor’s work

4. Lack of vendor understanding of the
system and its infrastructure

5. Potential for us-versus-them conflicts

 6. Low re-use of existing testware

7. Security and confidentiality issues

8. System migration and re-tuning after
the vendor’s testing

9. Friction at the turnover from the
external testers to the internal operations
people

10. Track record and history of problems

11. Other disadvantage (name:)

12. Other disadvantage (name:)

Total scores

(*) Relative importance of this factor in this culture and environment, on a scale from 0
(irrelevant) to 3 (critical).

(**) Degree to which this factor is present in this project, on a scale from 0 (not present)
to 3 (pervasive).

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.137

Exercise 2.6: Selecting the Methods of Testing

Instructions

There are many ways to measure performance. Selecting the right ones for a particular
situation is essential for developing an effective test strategy.

First, review the descriptions of test methods in Appendices A and E. The types and
categories overlap to some extent.

Second, rank (a) the usefulness for this project and (b) the likely ease of use of each of
the following methods in the work sheet below.

Third, review the entries you made in your work sheet and see which techniques rank
highest on both scales, and which rank lowest.

Fourth, question if the work sheet below the best mechanism to facilitate selecting the
test methods. How do you suggest we can improve it? Consider these points:

• All test design decisions are influenced by value and cost. To decide what you
want to test, you need to know how to think about the value of each one of the
test ideas and the cost to do it. A complicating factor is the value and cost of the
any test depends on what OTHER testing has already been done, and on the risk
profile of the product.

• One way to handle this is to organize your lists by the kind of risk information that

is revealed by each family of tests. Describe the value and cost of each kind of
testing within that family. Then decide what test strategy to use by evaluating
which risks exist in the project. For high risks or when cost is no object, choose
more types of testing within each family (because a variety of methods is much
stronger testing than using only one), otherwise, less are chosen (or none at all).

• Some kinds of testing reveal information about a very broad array of risks

(scenario testing or user testing, for instance) but what they reveal is not
necessarily deep information. Other types of testing, such as record/playback
style load testing, might provide information that is deep and quantitative, but
applies to only one kind of risk.

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.138

Test Methods Work Sheet

Test or Measurement Method Usefulness for Likely Ease
 this Project of Use in this
 Situation

1.0 Testing which is driven by what
we want to measure.

 1.1 Response time testing ____________ ____________

 1.2 Throughput testing ____________ ____________

 1.3 Availability testing ____________ ____________

 1.4 Measurement of resource

utilization ____________ ____________

 1.5 Capacity testing ____________ ____________

1.6 Error rate measurement ____________ ____________

2.0 Testing which is based on the source
or type of the load.

2.1 Usage-based testing ____________ ____________

2.2 User scenario testing ____________ ____________

2.3 Standard benchmark testing ____________ ____________

2.4 Load variation testing ____________ ____________

2.5 Ramp-up testing ____________ ____________

 2.6 Component-specific testing ____________ ____________

 2.7 Calibration and iterative ____________ ____________
 feedback testing

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.139

3.0 Testing which seeks to stress the system
or find its limits.

3.1 Scalability testing ____________ ____________

3.2 Bottleneck identification and ____________ ____________
problem isolation testing

3.3 Duration or endurance testing ____________ ____________

3.4 Hot spot testing ____________ ____________

3.5 Spike and bounce testing ____________ ____________

3.6 Breakpoint testing ____________ ____________

3.7 Degraded mode of operation ____________ ____________
testing

3.8 Physical environment testing ____________ ____________

4.0 Concurrency testing

4.1 Rendezvous testing ____________ ____________

4.2 Synchronization testing ____________ ____________

4.3 Interaction / interference ____________ ____________
 testing

4.4 Deadlock testing ____________ ____________

5.0 Risk-based testing (*)

 5.1 Risk assessment (*) ____________ ____________

 5.2 Hazard or threat ____________ ____________

identification

5.3 Disaster recovery testing ____________ ____________

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.140

5.4 Bad day testing ____________ ____________

5.5 Soap opera testing ____________ ____________

6.0 Testing which focuses on the impact
of changes.

 6.1 System impact assessment ____________ ____________

6.2 Infrastructure assessment ____________ ____________

6.3 Baseline testing ____________ ____________

6.4 Volume or parallel testing ____________ ____________

6.5 Live patch testing ____________ ____________

 6.6 Configuration testing ____________ ____________

 6.7 Extreme configuration testing ____________ ____________

(*) Risk-based is included here for completeness, but it is sufficiently important and
complicated that it justifies more attention. The next exercise (2.7) explores risk-based
testing further.

Exercise 2.7: Determining the Test Focus and Coverage

This exercise expands on the ideas discussed in the previous exercise, and places risk
at the center of the test selection process.

Instructions

Perform a risk assessment in order to identify where to focus the deep, intense testing
and where else to skim and test lightly, in order to conserve resources for the areas
which require the deep testing. You can assess and pinpoint the risks by answering the
following series of questions. You may do this exercise individually or in a team
brainstorming session.

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.141

QUESTIONS TO ADDRESS (A: PRIMARY FACTORS)

(2.7.1) What circumstances are likely to cause heavy demand on the system from
external users (i.e., remote visitors to the web site, who are not book club employees)?

(2.7.2) Under what circumstances is heavy internal demand likely (i.e., by the book club
employees)?

(2.7.3) What uses of the system are likely to consume a high level of system resources
per event, regardless of how frequently the event occurs? The resource consumption
should be significant for each event, not high in aggregate simply because the event
happens frequently and thus the total number of events is high.

(2.7.4) What system uses are timing-critical or timing-sensitive?

(2.7.5) What uses are most popular, i.e., they frequently happen?

(2.7.6) What uses are most conspicuous, i.e., have high visibility?

(2.7.7) Based on your understanding of the system architecture and support
infrastructure, where are the likely bottlenecks?

(2.7.8) What specifically is new or changed in the coming version of the system or its
support infrastructure? Areas which are new or modified are more likely to have
performance issues than areas which have already been running satisfactorily and have
not been touched. However, if most or all of the system is new, everything is at risk and
answering this question will not help.

(2.7.9) What has been your prior experience with other similar situations? Which
features or systems aspects typically have encountered performance problems? If you
have no experience with other similar systems, please skip this question.

(2.7.10) Are there any notably complex functions in the system, for example, in the area
of exception handling?

You are now about halfway through this exercise – time for a brief break to let your
brain cells cool off.

QUESTIONS TO ADDRESS (B: SECONDARY FACTORS)

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.142

(2.7.11) Are there any areas in which new and immature technologies have been used,
or unknown and untried methodologies?

(2.7.12) Are there any other background applications which share the same
infrastructure and are expected to interfere or compete significantly for system
resources (e.g., shared servers)?

(2.7.13) What is the architects’ and developers’ level of confidence in the system’s
adequacy? Do we know where in the system these people feel comfortable that
performance will not be an issue, and in which areas are they nervous? I am assuming
that the testers have access to the architects and designers – if not, this question and
the next one may be unanswerable and thus irrelevant.

(2.7.14) What are the architects’ and developers’ reputations for delivering systems
which fail to meet the performance goals, and their credibility in spotting potential
problems? Since these people usually understand the system internals better than
anyone else, their suggestions could be invaluable – but only if they know what they are
talking about.

(2.7.15) What can we learn from the behavior of the existing systems that are being
replaced, such as their work loads and performance characteristics? How can we apply
this information in testing the new system?

(2.7.16) What areas of the system operation, if they have inadequate performance,
most impact the bottom line (revenues and profits)?

(2.7.17) What combinations of the factors, which you identified by answering the
previous questions, deserve a high test priority? What activities are (a) likely to happen
concurrently, and (b) cause heavy load and stress on the systems?

(2.7.18) What areas of the system can be minimally tested for performance without
imprudently increasing risk, in order to conserve the test resources for the areas which
need heavy testing?

(2.7.19) In summary, considering the total picture, what areas should the performance
test focus on? Consolidate your answers to the prior questions in this exercise to form
an answer for this question, by completing a table like this:

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.143

Area to be
Tested

Likelihood or
Probability of
Performance
Problems in
this Area

Likely Cost or
Consequences
of the
Performance
Problems

Exposure
(Combined
Importance of
Likelihood and
Consequences)

Relative
Ease of
Testing in
this Area

Test Priority
for this Area

Database
maintenance
(updates, re-
indexing, and
back-ups)

High (5),
because this is
a highly data-
dependent
system with a
data-centric
system
architecture.

High (5),
because the
database
performance
affects all parts
of the system
operation and is
highly visible.

High (5), as this
is based on the
combined effect
of the entries in
the two columns
to the left.

Moderate to
high (4), as
automated
test cases
already are
available, and
a tool is being
acquired to
run them.

High (5), as
this is based
on the
combined
effect of the
entries in the
two columns
to the left.

Denial of
service
(DOS) attack

Low (1),
because an
attack is
assumed to be
unlikely.

High (5),
because without
adequate DOS
controls an
attack will shut
the system
down.

Moderate (3) Moderate to
low (2),
because a
large test load
must be
generated
and delivered.

Moderate
(3)

Incoming
telephone
calls to the
call center,
after a
promotion

Moderate to
high (4), but
expected to
decline over
time as more
people switch to
directly ordering
via the Internet.

Moderate to high
(4), because
people are
sensitive to
phone delays.
Members will be
irritated and
business lost.
However, non-
telephone work
is not affected.

Moderate to high
(4)

Low (1),
because a
small army of
testers are
needed to
manually
place phone
calls, or
specialized,
expensive call
generators.

Moderate to
high (4)

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.144

Exercise 2.8: Calculating the Test Work Load

Instructions

Answer these questions, based on (a) the following definitions of the terms used here,
and (b) the following set of measurements and assumptions. If necessary, you also can
refer back to the data presented in Section 2.A, Background Description of the
Situation, of this case study, but this exercise is intended to be self-contained. All the
information you need is attached in the next couple of pages.

Questions

A. TEST WORK LOAD VOLUMES

(2.8.1) How many web site visits or sessions are expected per month? (Hint: look at

assumption 1 below.)

(2.8.2) How many web site visits or sessions are expected in a typical hour? In this

calculation, ignore the little-visited hours from midnight to 10.00 am. (Hint: use
your answer from question 1 above, and also look at assumptions 2 and 3.)

(2.8.3) How many web site visits or sessions are expected in the peak-demand hour of

the day, i.e., in the busiest hour in a typical day? (Hint: use your answers from
the prior two questions, though this risks a ripple effect as errors propagate. Also
look at the assumptions.)

(2.8.4) (4.8.4) Should we test for the highest peak that can ever occur, or the most likely

daily peak (the mode) or the average peak (the mean).

(2.8.5) Before you try calculating your answers to the next few questions, first sketch a

graph to help understand the nature of the traffic flow:

l) In this graph, set the horizontal or x axis to represent the time on the clock, with
the left edge of the graph being time zero and the right edge being one hour
later.

m) Set the vertical or y axis to indicate the amount of activity (e.g., the number of

concurrent sessions).

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.145

n) Select any time at random within this hour of activity, as the start time for a
particular session.

o) Select the length of this session at random – according to the assumptions, the

average length is 15 minutes and the range is from 3 to 45 minutes.

p) Draw a horizontal bar on this graph to represent the session. The bar will stretch
from the start time for the extent of the session until its end time.

q) Repeat this process until you have a dozen or so bars, and stack each new bar

on top of its predecessors in the graph (with a little separation gap between each
pair of bars).

r) Remember to include some bars for sessions which were already active before

the hour (i.e., their start times are to the left of the zero line), and for sessions
which do not end within the hour (these trail off to the right).

s) Select a random point in time and draw a vertical line at that point on the graph.

t) See how many horizontal bars intersect this line.

u) The number of concurrent sessions at this point in time is represented by the

height of the pile of bars at that point, in other words, by the number of bars
intersecting the vertical line.

v) Experiment with your graph. Draw another couple of vertical lines at other points,

and count how many concurrent sessions are occurring at those times.

(2.8.6) What is the expected average number of concurrent visitors at any point in time?

(2.8.7) What is the expected peak number of concurrent visitors within a typical hour?

(2.8.8) What is the expected peak number of concurrent visitors in a typical month?

(2.8.9) Exactly what do we mean by the word “concurrently”? Do all users have to

active at any given instant, or can they be waiting for the system and vice versa?
What about someone who aborted but did not bother to log out? Until the system
times out, should we count them? Do we care either way?

(2.8.10) What is the minimum number of concurrent web site visits or sessions?

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.146

(2.8.11) How many hits and page views will happen to the home page in a typical

hour?

(2.8.12) How many page views will happen to the home page in the peak hour of a

typical month?

(2.8.13) Are there any inconsistencies in your calculations? Can you use

dimensional analysis to find questionable answers? (This technique is explained
later, in Appendix A.)

So what? How could and should we use the results of these computations in our test
work load planning?

You are now about halfway through this exercise – time for a brief break to let your
brain cells cool off.

B. TEST EXECUTION LOGISTICS

What should be the sample size? I.e., about how many of each significant event or
transaction should we include in each test run?

How should we validate and cleanse the collected data?

Should we compute and use the mean, median or mode of the data observations?

Approximately what should be the elapsed time for each test run?

During this period, what can we monitor in order to ensure that the measurement
process is proceeding in a satisfactory manner?

How do we make decision, if necessary, on whether to continue or abort a test run?

Can we deliberately accelerate the test throughput, faster than real world rate of events
occurring, in order to shorten the test duration? If so, how can we adjust for this
acceleration of the testing in the data analysis?

Can we make the test case mix more negative (i.e., more destructive) in order to enrich
the opportunities for system failure, faster than in the real world rate, in order to shorten
the test duration? If so, how can we adjust for this in the data analysis?

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.147

Approximately how many cycles of [test – tune or debug – then re-test] should we
allow for in the project schedule?

What are the main factors which will influence the test duration and number of cycles?

What other significant assumptions besides the ones listed below, if any, have you
made in this exercise?

Description of the Situation, Section 2.C: Volumetric Assumptions

C.1 MEASUREMENTS AND ASSUMPTIONS

Use the following data to calculate your answers to the work load questions. Please
document any additional assumptions you make.

C.1.1 USER DEMAND

1. The 100,000 active users (book club members) will visit the web site, on average
twice per month. Another 15,000 casual visitors (non-members) will access the site per
month.

2. The book store is open every day of the month (30 days on average), and the volume
of traffic is approximately the same from day to day.

3. This site is visited mostly by U.S. residents, and primarily for personal use, not
business use. The hours of most common use are 10 am EST through 12 pm PST (or
14 hours a day). 90% of visits occur during this period, as not many people use the
system at 3 am.

C.1.2 SESSION STATISTICS

4. A site visit, or session, lasts an average of 15 minutes.

5. While session lengths can be indefinitely long, 95% of sessions lengths fall in the
range from 3 minutes to 45 minutes.

6. For the purpose of this exercise, we can ignore the 5% of sessions which last less
than 3 minutes or more than 45 minutes.

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.148

7. Since calculating the number of overlapping sessions at any given point in time --
what many people call concurrent users – is complex, we can assume that this
approximation is sufficiently accurate: the number of concurrent users is equal to the
number of hourly sessions multiplied by the average session length (in hours). For
example, if there are 600 hourly users and the average session length is 10 minutes,
then the number of concurrent sessions is approximately 100 (600 multiplied by 1/6). At
any particular instant within that hour, the actual number of concurrent users can vary
from zero to 600, but the average during the hour is assumed to be 100.

C.1.3 HITS AND VIEWS

8. Each visit or session accesses and downloads the home page once on average.

9. Viewing the home page requires 5 hits.

10. Viewing the other pages requires 5 hits per page on average, though the range
varies from 1 to 10 hits per page.

C.1.4 PEAK LOADS

11. In a typical day, the peak hour traffic as measured by the number of hits or page
views is 20% of the total day’s traffic, including all 24 hours.

12. The number of sessions in the peak hour is expected to be 3 times the number in
the average hour. (This assumption considers only the 14 hours from 10.00 am to
midnight, and ignores the other 10 hours in the day.)

13. The peak number of concurrent users in a peak hour is expected to be 3 times the
peak number in the average hour of the day. (This assumption considers only the 14
hours from 10.00 am to midnight, and ignores the other 10 hours in the day.)

14. The peak number of concurrent users in a typical week is expected to be twice the
number in the daily peak hour, or 6 times higher than the number in the average hour.

15. The peak number of concurrent users in a typical month is expected to be 3 times
the daily peak hour, or 9 times the average hour.

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.149

Exercise 2.9: Balancing Exploratory and Structured Testing

Instructions

The purpose of this exercise is to determine how much the testing should be structured,
with pre-planned test scripts, versus exploratory, where we learn as we go. Commonly,
several unknowns complicate performance testing projects and limit the amount of pre-
planning – the beginning of the testing is when we know the least about the situation.
(See later for a description of the terms exploratory and structured testing.)

Review each of the following items and assign a score for your project to that item, on a
scale of 0 (the item is thoroughly understood and largely known) to 5 (the item is
unknown or highly uncertain). Then sum the individual scores to obtain a total for the
whole list. Typically, the more common uncertainties on performance and robustness
testing projects are:

1. How clear, complete, realistic and testable are the performance
 requirements? ________

2. What aspects of the system’s behavior are we interested in examining?
 In other words, what do we want to measure or monitor? ________

3. How do we analyze and derive conclusions from these measurements?

4. What load(s) or mixes of demands can we place on the system while
 we are measuring its performance and robustness characteristics? ________

5. How can the test equipment be set up, connected and configured? ________

6. What and where are the vulnerabilities in the system we are testing?

7. What issues, complications and hassles are we likely to encounter during
 this performance testing project? ________

8. How comfortable is our team about our ability to handle these issues?

9. Are the completion criteria for performance testing well defined, clear and agreed

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.150

 to? ________

10. How many iterations of debugging, tuning and/or modification will the
 system have to go through as part of this project? ________

This second group of questions are not as popular as the group above, but they are still
widely asked:

11. What is the test process and the set of steps we will be following on this
 project? ________

12. Who are the users, and how will they use the system? ________

13. How do we use the testing tools we have available? ________

14. What test equipment is needed, and where do we get it from? ________

15. What are we seeking to accomplish with this test project? ________

16. When will the system be ready for performance testing? ________

17. How long will we have for performance testing before the system is released?

18. How clear, feasible and agreed to are the performance goals and specifications
for the system? ________

19. How unskilled or inexperienced is the test team, and to what extent
 are they unsure how to proceed? ________

20. What specialized test expertise is needed to bolster the test team, and where do
we get it from? ________

 Total Score: ________

This number, the total score, is the approximate percentage of the testing effort on the
project which should be exploratory, and the remainder of the effort will be structured.
This list of questions can be helpful in another way. It allows us to reflect on the
situation and identify the project areas which are settled and well understood, versus
the areas of uncertainty.

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.151

We want to pay more attention, and earlier in the project, to the questions which
received high scores. If only a few questions have high scores, it is fairly easy to focus
on and manage that handful. If instead most of the questions have high scores, we can’t
easily manage them all. We’d take the fundamentally different of exploratory testing. If
the total score is high (above 65), it is important to inform the managers and clients
about the inherently high risk nature of the performance testing project, and to develop
contingency plans in case the project does not proceed as expected.

HOW MUCH DO WE KNOW?

Structure requires knowledge. Another way to decide how structured the testing can be
is to examine how much we know about the situation. Read the section on: “The
Information Gathering Checklist”. What proportion of this list could you reliably answer
at this stage? That is roughly equal to the proportion of the testing that can be pre-
planned and structured.

Exercise 2.10: Developing Your Test Automation Framework

ASSESSING READINESS FOR TEST AUTOMATION

The purpose of this first part of the exercise is to assess your chances of automating the
performance testing successfully.

Please rate these statements as they apply to your current project or to your
organization as a whole; for each statement assign a score of between 0 and 10 points
(0 -- this item is a major issue; 10 -- it is not an issue):

1. We have the management, developer and user support (e.g., budget,
 resources, time) we need to proceed successfully with automation. ______

2. We are ready for automation and have a commitment to proceed. ______

3. We understand why we are automating and what benefits specifically
 will be realized. Our expectations are realistic. ______

4. Our test team has prior experience with automation in the similar
 environment and with the same or similar test automation tools. ______

5. The pilot project for automation has been selected and is a good choice.

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.152

6. The automated testing tools have been selected and are appropriate
 for the job at hand. ______

7. Our existing test case repositories are re-usable – the automated feature
test cases can be converted fairly easily into performance test cases. ______

 Total: ______

You may find that this exercise generates more questions than answers -- jot these
questions down for follow-up discussion. If you scored 50 or better out of 70 in this quiz,
automation is likely to be a breeze for you. If you scored 25 or less, you will probably be
in trouble without further preparation.

DESIGNING THE AUTOMATION FRAMEWORK

The purpose of this exercise is to take an inventory of tools and processes which are
already available in your test environment, and to develop a first draft of the automation
framework which is required for test automation to succeed.

(2.10.1) Review the test automation framework diagrams in Appendix H, and – for any
categories of tools you are not familiar with -- the accompanying tool descriptions in
Appendix A. These diagrams present a generic overview of the types of tools often
found in test labs.

(2.10.2) Review each type of tool in the framework and answer these questions:

a) Is this test functionality already in place? I.e., is this type of tool already installed
and working in the test environment? (Identify the tools which are installed and
available, according to the background description. Then map those tools into the
types shown in the framework diagrams, to see what types are installed.)

b) If so, is this test functionality working and effective, based on what we are told in

the background description?

c) Is this type of tool critical for this performance test project, or somewhat helpful
though not critical, or irrelevant?

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.153

d) If some tools are already in place which are not primarily performance test tools
(e.g., automated functional test tools), can the performance testers “piggyback”
intelligently on these?

e) Do the people on your test team already know in depth how to use this tool?

f) Is troubleshooting and tutorial support available on site? Can other internal

groups support your team’s use of the tool?

g) How well is this tool likely to be integrated with the other testing & QA tools?

h) What data needs to be passed to and from this tool by other tools?

i) Is it better to buy or build this tool for your test environment? Why?

(2.10.3) Draw a block diagram of the automation framework. This diagram should show
the tools needed for automation to be effective; indicate which tools are already in
place, and show the data flows from tool to tool. If the testing will occur in a multi-
platform environment, the diagram should also indicate the platform on which each tool
is expected to reside.

Note: we are not looking for a complete, final and polished automation framework at this
point, just an initial sketch.

Exercise 2.11: Estimating the Number of Test Cycles

Performance testing is usually highly iterative, with rapid re-tests as bottlenecks are
found and resolved. This means the test facility set-up and re-run must be agile. It also
means that an early if crude estimate of the number of test cycles is important – if we
assume 3 cycles and the project actually requires 15, our deadline is imperiled.

(2.11.1) Approximately how many test cycles are needed?

• To establish a working test facility, including ensuring that test equipment is
installed and connected correctly, and debugging test scripts?

• To explore and build a sense of how the system works and the work load flows?

• To uncover and resolve bottlenecks?

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.154

• To build confidence that the tested system is ready to go live?

Exercise 2.12: Defining the Roles and Responsibilities

Review the appendix entitled: “Roles and Responsibilities” and answer these questions:

(2.11.1) Who should be involved in this testing project, both within and external to the

test team?

(2.11.2)What skills do you need to be represented in the performance test team?

(2.11.3) What should be the performance testers’ roles and responsibilities?

(2.11.4)Who can clarify for you, if necessary, the business requirements and

expectations and the performance goals for the system?

(2.11.5)Who can clarify for you who the users are, how they will be using the system,

and what their demographics are?

(2.11.6)Who can address your questions about the system design and architecture and

their testability?

(2.11.7)Which people can provide you with test data?

(2.11.8)Who are the persons to contact when you find performance problems such as

bottlenecks in the infrastructure?

(2.11.9) In which ways do you think the corporate culture is likely to encourage effective

testing practices?

(2.11.10) In which ways is it likely to discourage them?

Exercise 2.12 Building Flexibility into the Performance Testing

xxx

III. Determining The Performance Test Approach

 Copyright © 2005 Collard & Company

 Case Study 1.155

Exercise 2.13 Coordinating Performance Testing with other Activities

xxx

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.156

IV. SPECIFYING THE TESTS

Exercise 2.14: Developing the Performance Test Scenarios

A performance test scenario describes a particular test to run, including the mix of
demands to place on the system, the test equipment and tools, what data to collect, and
so on. (Some people call this a test case, test script, test condition, etc.)

The main purpose of this exercise is to determine how detailed the test planning should
be for this project, and how much documentation makes sense in a performance test
scenario. A secondary purpose is to learn the attributes of an effective test scenario.

Instructions

(2.12.1) Review the list of desirable characteristics of effective scenarios in Section 2.D.

(2.12.2) Form an opinion about the objectives and feasibility of the test scenario below
(in Section 2.D), by answering these questions:

a) Are the objectives of this performance test scenario clear and reasonable?
b) Are the objectives worthwhile? Will the scenario deliver information of value?
c) Is the scenario feasible – can it be done without an unreasonable cost, delay,

scarce skills and effort?
d) Does the scenario clearly state what skills are required to run it, or is this obvious

from the context?
e) What is the likelihood that the tester will need help applying the scenario? Is

there any support available, if needed, e.g., in the form of a subject matter expert
or a tutorial, on how to use the scenario?

f) Does the scenario provide estimates of the time and effort needed to run it, or
are these also fairly obvious?

(2.12.3) Does the scenario provide sufficient direction, so that the tester has what he or

she needs to run the test and efficiently produce reliable results?
a) Is there sufficient information provided about the test load? To answer this,

attempt to sketch a diagram showing the test load:
i. On the horizontal axis, show the time in one-minute segments.
ii. On the vertical axis, show the counts of each major type of

transaction (e.g., a catalog announcement, an order).

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.157

b) Based on the scenario, will the tester know what test cases to develop or modify,
if any?

i. Manual test cases?
ii. Automated test cases?
iii. Test databases?
iv. Custom test code to be written (e.g., specialized test drivers)?

c) Will the tester know what behaviors to observe, what data to collect, and how to
filter or validate that data? Is it clear what accuracy and precision are needed?

d) Will the tester understand how to interpret the collected data and draw
conclusions?

e) Will the tester know how to set up the test? (What equipment is needed, how
should it be configured, what tools and test case libraries are needed?)

(2.12.4) Are the risks clear and manageable?

a) How do we know that the scenario is being maintained as business and technical
conditions evolve, and is up to date?

b) What could go wrong during the testing? Does the scenario identify the tricky
areas and describe what can go wrong?

c) Are there adequate warnings and controls over what could go wrong?
d) Have the vulnerabilities and risks of mis-using the test scenario itself been

identified and explained in the scenario, plus how to double-check for possibly
erroneous conclusions?

e) Will the tester know how to present his or her findings objectively, defend them if
necessary, and avoid politics (or work the politics to his advantage), so that the
findings and test results receive a fair hearing?

(2.12.5) Is randomization employed effectively? Which parts of this scenario should be

randomized?

(2.12.6) What are the pros and cons of implementing this scenario with many distinct

and uniquely defined virtual users versus one or a small number of aggregate
virtual users, who collectively impose a similar load on the system?

(2.12.7) Is the duration for this test scenario (75 minutes, most of which is spent in data

collection) about right? Why not 75 seconds or 75 hours?

(2.12.8) How do you suggest this scenario can be improved?

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.158

Description of the Situation, Section 2.D: Performance Test Scenarios

D.1 A (CLAIMED) HIGH-OPPORTUNITY TEST SCENARIO

This test scenario mimics what happens when a new e-catalog is announced (the
announcement is broadcast to book club members). These members respond by
browsing through the new catalog on-line or down-loading the catalog, and then place
what the managers hope will be a surge of orders. The purposes of this test are to find
whether:

(a) the system can handle a peak load,

(b) if it fails under load, it recovers as expected,

(c) there are bottlenecks – particularly in the communications network – at the load
levels used in the test, and

(d) a previously untried technology – wireless – is adequate.

This scenario is intended to load and stress the system, in accordance with the test
focus and priorities (i.e., with the vulnerabilities highlighted by the risk assessment). The
scenario is expected to be realistic, in the sense that it complies with the operational
profiles established in the Description of the Situation, Section 2.E.

D.2 A DETAILED VERSION OF THE TEST SCENARIO

D.2.1. Description

Name of this test scenario: ANNOUNCEMENT OF NEW E-CATALOG

ID# and version #: The ID# is to be assigned; this is version 0.9 (final internal draft
before publication for review by people outside the performance test team).

Area(s) where this scenario is used: Full-system testing, with a realistic peak load.

Cross-references (e.g., to the different customer groups to which this scenario applies,
system versions, platforms, etc.): To be added.

Person responsible for this test scenario: You.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.159

Date created or last modified: Today.

D.2.2. Purpose and Intended Use

Summary: This scenario determines whether the system can handle the demand that
occurs when a new e-catalog is released and triggers a surge of new orders.

Typical work flow (test case):

n this draft scenario, the specific data values for the test work loads have not yet been
calculated, and each is designated by “xxx” followed by a unique number (e.g., xxx3).
Each “xxx” value later will be replaced by the correct number, as derived from the
operational profile. Assigning “xxx” to data values is deliberate, as finding or calculating
the actual numbers can take some effort. Instead of mindlessly calculating all possible
metrics and then not using many of them, instead we first identify the numbers we need
and designate them by “xxx” until we replace them with the actual values.

The event that initiates the test scenario is an announcement of a new e-catalog. The
flow of events is as follows:

• Approximately xxx1 people receive the e-mail notification of the new catalog
within the first yyy1 minutes.

• In response, xxx2 people download the e-catalog table of contents page within

yyy2 minutes of receiving the notification. The periods yyy1 and yyyy2 overlap
with the peak number of the table of contents requests occurring yyy3 minutes
after the first of the e-mail notifications is received.

• This results in xxx3 additional page downloads from the catalog, xxx4 book

searches and xxx5 new orders placed in the next yyy4 minutes.

• Unrelated to the e-catalog announcement, the number of other home page views
during the same time are xxx6, and the number of downloaded pages containing
sizeable video, audio or graphics files are xxx7. All orders received after this time
(i.e., after the first [yyy1 + yyy2 + yyy4] minutes), are ignored in this scenario as
the load has diminished from the peak.

• During the same time, the promotion generates xxx8 phone calls to the book

club, which in turn generate xxx9 database accesses, queries and updates for

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.160

the phone call support and xxx10 additional orders entered by the book club
staff. In the same time, xxx11 copies of the paper version of the catalog are
printed. (In the test lab, we will simulate this but not actually print catalogs, in
order to conserve paper.)

• During the same time, there will be a steady stream of xxx12 timing-sensitive VIP

queries and management ad hoc reporting requests, at the rate of xxx8 per hour.
Sample query: Compute the net increase of sales in the state of North Carolina
from last year to this year, for books selling for more than $50 each. Sample
report request: Compute and print a series of 50 reports, one per state within the
U.S., of the state sales taxes incurred so far this month.

• Background noise is a part of the test scenario. This noise will be provided by

running the billing system and the company e-mail system at normal load levels
in the test environment, concurrently with the test scenario.

• Wireless is an unknown and untried technology for the book club and the system

developers, so it is included in the test scenario. During the same time, xxx13
messages will be transmitted by wireless to the Warehouse Group, instructing
them to pick, pack and ship book orders.

This test scenario is based on the assumption that the first hour after a promotion
announcement will be the peak demand hour.

The test scenario is likely to cause a bottleneck in the communications network, if there
is one that occurs at these load levels, because it attempts to overload the local area
network (LAN) and the external telecom links. The LAN carries both the print requests
and database queries and updates. The telecom links carry the voice call traffic and the
web site traffic.

[Alternate]

A total of z1 existing book club members receive the e-mail notification of the new
catalog’s availability, within an elapsed time period of z2 minutes. Of these members, z3
respond within an average of z4 minutes each by downloading the joint cover page /
table of contents page of the catalog. The typical respondent requests and reviews z5
more pages of the catalog in the next z6 minutes, and then places a new book order for
z7 different book titles z8 minutes later. Orders arriving after the first z9 minutes are
ignored in this scenario, since by then the load has dropped significantly below its peak
and the system behavior is no longer of interest.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.161

Settings: Test Volumes. Initially, the parameter z1 will be set to 25,000 members (25%
of all members), z3 to 10% of z1 (2,500 orders), z5 to3 web pages, and z7 to 1 book
title. In later test runs, z1 will be increased to 100,000 and z3 to 15,000.

Settings: Transaction Timings. The values of z2, z4, z6 and z8 are each expected to
vary around an average value during a test run. These averages still have to be
determined, based on an experiment to observe typical web visitor behavior and an
analysis of the operational profile data. Initially, for the purpose of testing the automated
test scenario itself, z2 will be set to 15 minutes and the other timing averages (z4, z6
and z8) will be set to 5 minutes each. Note that the responses to the broadcast of the e-
mail notifications overlap the broadcast itself, in other words, members do not wait until
all notifications have been distributed before the first one responds. The value of z9
initially be set to the sum of the values for z4, z6 and z8.

D.2.3. Justification

Why this scenario is worth testing: The risk assessment identified this scenario as a
high priority – it is relatively likely to occur, and with high-cost consequences when it
does occur.

Why this scenario is worth documenting: This level of detail is necessary in order to
provide sufficient direction to the test automation specialist(s) who will build and
maintain it, and to the testers who will run it.

D.2.3.1 Possible Outcomes

Expected or desirable outcome (pass criteria): The system can handle a volume of x1
catalog downloads and x2 entered orders in an elapsed time period of 30 minutes, while
also meeting the performance requirements described below. (These targets, x1 and
x2, need to be calculated.)
Anomalies (fail criteria): The system cannot reach and sustain this service level for 30
minutes.

D.2.4. Target Audience

Who will use this scenario: Performance testers, test automation specialists.

Skills and experience needed to use this scenario: Competence in test set-up, execution
and data collection, and results evaluation. Familiarity with the business application.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.162

Programming skills are not needed to use this test scenario, but are needed to create
(automate) it.

Who needs or will use the test results: To be added.

Management decision-making needs: Senior management; business unit mangers for
the customer service, catalog publishing and warehouse distribution departments; IS
managers.

Technical decision-making needs: System developers; support and maintenance
personnel; system administrators; database administrators; network engineers; capacity
planners.

D.2.5. Performance Requirements addressed by this Scenario
Types: Response time; throughput; resource utilization when the system is subjected to
peak demand.

Performance targets or goals: Response time of y1 seconds or better; 90% of the time
or more; throughput of x1 catalog downloads and x2 orders entered in 15 minutes; with
resource utilization of y2% or less of the processor capacity and y3% or less of the
memory capacity. Initially, y1 will be set to 3 seconds and both y2 and y3 to 50%.

D.2.6. Hypotheses to be Proven or Disproven

Statement of the first hypothesis: The system will pass this test, by meeting or
exceeding the performance targets described above, in everyone of a series of test
runs, and with adequate documented evidence that it has passed.

Example(s) to prove the hypothesis: Successful completion of a mix of test runs using
this scenario. The exact mix has still to be determined.

Counter-example(s) (look for a counter-example to disprove a hypothesis rather than
repeated exercises to prove it): One unsuccessful test run. For the test results to be
plausible, this test run must be done under realistic conditions. The results also should
be unequivocal, not subject to doubt, even if this means devising new variations of the
scenario “on the fly” in order to confirm the evidence.

Statement of the second hypothesis: Under the loads planned for this test, the system
will still have sufficient spare capacity to handle additional demands.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.163

Proof of this hypothesis: Within the 30 minute duration of each of the test runs, none of
the system processors will exceed a processor utilization level or a memory utilization
level of 80%, except momentarily (for periods of 30 seconds or less). These thresholds
(80% or higher utilization for 30 seconds or less) were determined to be reasonable and
prudent goals by the system administrators who will be running the system in live
operation.

D.2.7. Description of the Test Scenario

Overall approach: This scenario mirrors the demands associated with a monthly
promotion and announcement of the new e-catalog and the ensuing wave of sales.

Major assumptions: The test work load is a realistic representation of actual demands;
the test environment is realistic; the automated test tools are trustworthy and behave as
the testers expect (for example, measuring what the testers think they are measuring);
the test implementation specialists have built the scenario correctly according to this
blueprint (this document); the test focuses on monitoring the key events and does not
overlook any significant symptoms; the data collection, interpretation and analysis
methods will be adequate to prove or disprove the test hypotheses; the testers have the
skills needed to use this scenario correctly; and there is adequate time available to set
up and check out the test carefully, and to run and re-run variations of the scenario in
order to explore adequately the system’s behavior.

Scope: To be determined.

Not Included in the Scope: To be added.

Priority and criticality of this scenario: High.

D.2.8. Test Infrastructure

Scalability approach – infrastructure realism: The test environment will mirror the live
environment, and use a copy of the full live database.

Adjustments for differences between test lab vs. live environment: No adjustments are
needed.

D.2.8.1 Test equipment

Inventory: hardware, networks, databases, support software: Same as used in live

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.164

operation, including the wireless.

Equipment preparation: To be added (TBD).

Equipment set-up: TBD.

Configuration: TBD.

Support software and tool installation: TBD.

Data loading: TBD.

Checking readiness: TBD.

People resources: TBD.

Team formation and orientation: TBD.

Timing of resource demands (i.e., forecast of when they are needed during the project):
TBD.

Test tools and libraries: TBD.

Types needed: Load generation and measurement – LoadRunner; monitoring tools – to
be determined (tbd); profilers – tbd.

Training and tool support needs: LoadRunner.

Test case libraries:
Existing: WinRunner feature test case libraries will be reviewed for the feasibility of their
adaptation and re-use by LoadRunner.
To be developed or adapted: An estimated 50% of the test scenarios listed below
cannot be adapted but must be built.

Test database(s): A full copy of the live operational database will be used as the test
database. Test transactions, whether manual or part of automated test scenarios, must
coordinate with or match this database.

Automation framework and harness: None is required other than what is provided by
LoadRunner.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.165

Test data sources (e.g., market research): See the case study for operational profile
(OP) data.

6.2.9. Pre-conditions

Dependencies on other events: The announcement of a new e-catalog.

Loading of test data files: The test database must be loaded.

System calibration: None required

Ramp-up to desired initial state (at start of test): Ramp-up will occur promptly to prepare
for the testing, but not fast that the system is not ready for full load. Measurements will
not be taken during the ramp-up.

Validation of initial state: The system monitoring capabilities will be used to check the
system is functioning satisfactorily in a steady state, with a full normal-case work load
being handled.

Triggering event (if any): Broadcast announcement of a new e-catalog.

6.2.10. Expected Actions

Narrative description of events that occur during the test period: The announcement
leads book club members to either browse through or download the e-catalog, resulting
in book searches and new orders.

Flow of events (sequence, dependencies): Natural work flow, e.g., searches before
selection and ordering; order status queries after ordering.

Background noise during the test period: On-going book orders, searches and queries
at normal levels; billing. e-mail.

6.2.11. Timings

Duration of the entire test period: 75 minutes, including two back-to-back test runs,

Test preparation:

Set up: 5 minutes.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.166

Validation of set-up: 2 minutes.
Start up (time to reach a steady state): 5 minutes.
Validation of readiness: 3 minutes.

Main workflow (session durations and data collection intervals):

Part 1: 30 minutes.
Part 2: 30 minutes.

Follow-up:

Test shut down, re-setting the test environment, results logging and clean up:
5 minutes.

Initial review and acceptance of collected test data: 10 minutes.

Justification for these timings: Trial runs; prior experience on similar projects.

6.2.12. Post-conditions

Validation of final state: TBD.

Re-setting / restoration ready for next test: TBD.

Logging and archiving of collected data (test results) : TBD.

6.2.13. Test Work Loads

Load realism: approach to achieve this.

User biographies and demographics: : TBD.

Work flows

Descriptions
Messages and transactions
Events
Threads and processes
Use cases

Test databases

Demographics (operational profiles)

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.167

6.2.14. Types of Testing to be Utilized

Response time testing
Throughput testing
Availability testing
Measurement of resource utilization
Measurement of spare capacity
Error rate measurement
Usage-based testing
Load variation testing
Ramp-up testing
Scalability testing
Bottleneck identification and isolation testing
Duration or endurance testing
Hot spot testing
Spike and bounce testing
Breakpoint testing
Rendezvous or synchronization testing
Feature interaction / interference testing

6.2.15. Types of Testing that are NOT included in this Project

Standard benchmark testing
Component-specific testing
Calibration testing
Deadlock testing
Degraded mode of operation testing
User scenario, bad day and soap opera testing
Disaster recovery testing
Hazard or threat identification
Compatibility and configuration testing
System change impact assessment
Infrastructure change impact assessment
Baseline testing
Volume testing or parallel testing
Live patch and change testing
Extreme configuration testing

6.2.16. Automated Test Scripts Used in this Scenario

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.168

Web site demands from external users
Home page download (mandatory)
Book search (mandatory)
Book query (optional for this test scenario)
Book order (mandatory)
Credit card authorization (mandatory)
Query status of existing order (optional)
Add new member (optional)
Change membership information (optional)
Link to another site (optional)

Demands generated internally in response to telephone calls and mail

Book query (optional)
Book order (mandatory)
Credit card authorization (optional)
Status of existing order(optional)
Add new member(optional)
Change membership information(optional)
Delete existing member (optional)
Complaint (optional)

Warehouse demands

Shipping and bill of lading (mandatory)
Inventory query (optional)
Publisher query (optional)
Publisher order (optional)
Inventory update (optional)
Order fulfillment: picking instructions and confirmations (mandatory)

Maintenance traffic

Internal e-mail traffic -- among all departments (mandatory)
System administration
On-going administration (optional)
Periodic (e.g., database back-up) (optional)

Senior management transactions

Ad-hoc query (mandatory)
Daily on-line status report (mandatory)
Weekly or monthly status summary (optional)

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.169

6.2.17. Manual Test Scripts

Manual versions are needed for all the automated test cases listed above.

6.2.18. Data Collection Plans

Inventory of what to measure

Descriptions of how to measure

Conditions / criteria for measurement

How to capture the measurements

Where to log the measurements

Data cleansing and validation

Sample sizes

Sampling rates and techniques

6.2.19. Data Interpretation and Analysis Plans

Data interpretation strategy and methods

Expected results (tie these back to targets)

Pattern recognition

Correlations and comparisons

Routine behavior

Interesting anomalies

6.2.20. Results Evaluation and Reporting

Proof or disproof of hypotheses

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.170

Derivation of findings and conclusions

Development of recommendations

Presentation and justification of recommendations

6.2.21. Proof of Concept / Trial Run

Required? Yes

Assigned to: Not yet assigned

Due date: Not yet scheduled

6.2.22. Project Management and Status Tracking

Major milestones

Schedule

Resource needs

Progress reporting

Quality review process

Budget

Exercise 2.14: Selecting the Test Tools

Instructions xxx

Exercise 2.15: Using the Test Tools

Instructions

The purpose of this exercise is to identify and analyze tool issues which tend to be
important in a performance and robustness test project.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.171

Questions to Address

(2.12.1) What testing tools should be utilized?

(2.12.2) How should the tools be linked to provide an integrated test framework?

(2.12.3) How do we generate and drive the test loads? E.g., do we capture a copy of
live activity or generate fictional test data? Do we drive the test manually or using
automated tools?

(2.12.4) What tool skills are required for this performance test? What kinds of people
should be on the performance test team?

Exercise 2.16: Collecting the Performance Data

Questions to Address

(2.13.1) What data do we want to collect or measure, in order to evaluate the
performance of this system? (In other words, how do we define performance for this
system?) Should response time, throughput, availability, error rates or resource
utilization be measured, some mix of these, or other characteristics?

(2.13.2) Where – at what points or locations -- will the measurements be taken? (In
other words, at what points internally within the system or externally to the system do
we want to gather data or monitor the system’s behavior? What performance data
needs to be captured at which locations? We do not need a precise answer yet, just a
general sense of where to look)

(2.3.3) What loads or mixes of demands should we place on this system, while
measuring its performance, such as an average load, a peak load or an overload?

Exercise 2.17: Analyzing the Performance Data

Questions to Address

How should the collected data (the test results) be analyzed and interpreted?

How do we determine, based on the measurements, whether the performance
objectives of the system are likely to be met in real-world operation of the system?

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.172

Watch this space – this exercise is coming soon.

Exercise 2.18: Identifying and Reviewing the Outstanding Issues

Questions to Address

What are the likely difficulties involved with this performance test project? What are the
risks, if any, that the performance test will not deliver trustworthy or usable results?

What additional information, if any, do you need to know before you can develop an
adequate performance test strategy?

What assumptions have you made about this situation? Do these assumptions need to
be validated, and if so, how can we validate them?

How should we handle the performance-related system requirements, in areas like
usability, security and maintainability, which nominally are outside the scope of the
performance testing?

Description of the Situation, Section 2.E: Supporting Information

This section addresses these topics:
 E.1 System Usage Demographics
 E.2 Feature List and Operational Profile
 E.3 Transaction Lengths

E.4 Other Systems on the Shared Infrastructure
E.5 Growth Projections

 E.6 Changing Mix of Demands
E.7 Service Level Agreements

 E.8 System Development and Feature Testing Methodology
 E.9 Automated Test Facilities
 E.10 Test Conditions and Constraints

E.11 Estimated System Usage

E.1 SYSTEM USAGE DEMOGRAPHICS

The transactions processed by the order processing and related systems are listed
below, together with their expected frequencies of utilization. The transaction volumes

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.173

are based on actual counts of transactions within the existing system, which have been
adjusted for the expected differences between the existing system and the new one.
(There is not always a one-to-one relationship between the transactions in the existing
system and the new one.) These counts reflect today’s use and do not include the
project growth in the future, and do not reflect the anticipated shift from primarily internal
ordering (by book club employees) to primarily external (by book club members and
visitors through the web site).

E.1.1 TIMING OF THE OCCURRENCES OF PEAKS

The peak hours of demand for the business groups may not all happen at the same
time. Information about when the peak demands occur during a week or month (i.e., at
which specific hours), for each feature and type of system use, is not yet available.

E.2 FEATURE LIST AND OPERATIONAL PROFILE

E.2.1 CUSTOMER SERVICE GROUP

User Group / Frequency of Utilization Priority (*)
 Feature or Transaction (Transactions per hour)
 Normal use Peak use (**)
 Week Month

Web site page views by external users (direct external demands). These transactions
are initiated from external users via the Internet:

 Main or home page 500 1,800 3,600 1
 Book search 250 1,000 2,000 2
 Book query (availability, price) 250 1,000 2,000 1
 Book order 50 250 500 2
 Credit card authorization 50 250 500 2
 Query status of existing order 25 50 75 3
 Add new member (sign up) 5 15 50 1
 Change membership information 5 15 50 3
 Link to another site 125 500 1,000 2
 E-mails to / from members and
 visitors: included later -- -- -- 1

 Totals (rounded) 1,250 5,000 10,000

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.174

The numbers have been rounded for convenience and thus do not add up exactly.

(*) Priority of each type of transaction, where 1 is the highest and 4 is the lowest priority.

(**) These peaks represent the expected load during the worst-case hour in a typical
week, and in a typical month, in the two columns respectively. The peaks for all these
types of transactions are not expected to occur within the same hour of the week or the
month.

User Group / Frequency of Utilization Priority (*)
 Feature or Transaction (Transactions per hour)
 Normal use Peak use (**)
 Week Month

(b) Demands generated internally in response to telephone calls (the average duration
of these telephone calls is 12 minutes each). These transactions are initiated from the
personal computers in the customer service group:
 Book query 150 300 600 1
 Book order 100 200 400 2
 Credit card authorization 50 100 350 2
 Status of existing order 25 50 100 2
 Add new member 1 5 10 1
 Change membership information 1 5 10 3
 Delete existing member 0.5 2 5 3
 Complaint 0.5 2 25 1

 Totals (rounded) 300 650 1,500

E.2.2 CATALOG PUBLISHING GROUP

User Group / Frequency of Utilization Priority (*)
 Feature or Transaction (Transactions per hour)
 Normal use Peak use (**)
 Week Month

 Book list
 Add book to list of available books 2 50 100 3
 Change book information 1 50 100 3
 Delete book 1 10 20 3
 Add book review 5 25 50 3

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.175

 Change book review 1 5 10 3

 Monthly catalog of available books
 Printed catalog (***) 0 0 2,500 4
 Distributed via the Internet (***) 0 0 15,000 4

 Monthly promotional broadcast (***) 0 0 100,000 3

These transactions are all initiated from the personal computers in the catalog
publishing group.

(***) These loadings on the system happen only in occasional bursts; normally the
transaction traffic per hour is close to zero.

E.2.3 WAREHOUSE GROUP

User Group / Frequency of Utilization Priority (*)
 Feature or Transaction (Transactions per hour)
 Normal use Peak use (**)
 Week Month

 Shipping and bill of lading 150 500 1,000 3
 (Shipping papers and invoice)

 Inventory management (****)
 Inventory query 10 50 100 1
 (Internal levels of inventory)
 Publisher query (e.g., review of 10 50 100 2
 new book titles)
 Publisher order 5 25 50 3
 Inventory update 10 500 500 3
 (Receipt of new book data from publishers)

These transactions are all initiated from the personal computers in the warehouse
group.

Order fulfillment
 Picking instructions 250 750 1,250 2
 and confirmations

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.176

These transactions are all initiated from the hand-held wireless devices in the
warehouse group.

(****) These transactions are not processed by the ordering system, but by other
systems which share the same resources.

E.2.4 INFORMATION SYSTEMS GROUP (****)

User Group / Frequency of Utilization Priority (*)
 Feature or Transaction (Transactions per hour)
 Normal use Peak use (**)
 Week Month

 System development and maintenance 50 250 500 2
 Internal e-mail traffic -- among all depts. 1,000 3,000 5,000 2
 External e-mail traffic 50 100 250 1

System administration
 On-going administration 50 250 500 1
 Periodic (e.g., database back-up) 0 200,000 200,000 4

These transactions, except the e-mail, are all initiated from the personal computers in
the IS group. The e-mail traffic is distributed equally across all the clients in the network.

E.2.5 SENIOR MANAGEMENT GROUP

 Ad-hoc query 0 250 500 1
 Daily on-line status report 10 100 250 2
 Weekly status summary 5 500 500 4
 Monthly financial and ops. data (****) 0 0 500 4

These transactions are all initiated from the personal computers in the senior
management group.

E.3 TRANSACTION LENGTHS

Each transaction length in this table includes both the input and response lengths.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.177

E.3.1 Customer Service Group

 Transaction Length in kilobytes (KB)
 Median Average

 Main or home page download 2 2
 Book search 16 32
 Book query (availability, price) 2 2
 Book order 2 4
 Credit card authorization 2 2
 Query status of existing order 2 4
 Add new member (sign up) 4 4
 Change membership information 4 4
 Link to another site 2 6
 Delete existing member 2 2
 Complaint 2 3

E.3.2 Catalog Publishing Group

 Book list
 Add book to list of available books 2 4
 Change book information 2 4
 Delete book 2 2
 Add book review 2 4
 Change book review 2 4

 Monthly catalog of available books
 Printed catalog 512 1,024
 Distributed via the Internet 64 96

 Monthly promotional broadcast 2 3

E.3.3 Warehouse Group

 Shipping and bill of lading 2 3

 Inventory management
 Inventory query 2 2
 Publisher query 2 3
 Publisher order 4 6

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.178

 Inventory update 2 3

Order fulfillment
 Picking instructions 2 3
 and confirmations

E.3.4 Information Systems Group

 System development and maintenance 16 20
 Internal e-mail traffic -- among all depts. 1 2
 System administration
 On-going administration 2 3
 Periodic (e.g., database back-up) 1 1

E.3.5 Senior Management Group

 Ad-hoc query 2 3
 Daily on-line status report 2 2
 Weekly status summary 4 4
 Monthly financial and operating data 8 8

E.4 OTHER SYSTEMS ON THE SHARED INFRASTRUCTURE

E.4.1 FREQUENCY OF UTILIZATION

The ordering system interacts and shares resources with other systems, such as billing,
publisher ordering, market data analysis (data mining) and communications (e-mail).
The extra work loads include overhead and background transactions like e-mail
between the book club employees, and features which are not part of the ordering
system but which are hosted on the same application servers. (Other systems which are
not listed here have their own separate application servers, and these are not included
in the equipment inventory in the Description of the Situation, Section 2.B.)

The work loads for the features of the other systems which run on the shared servers
are as follows:

User Group / Frequency of Utilization Priority (*)
 Feature or Transaction (Transactions per hour)
 Normal use Peak use (**)
Week Month

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.179

E.4.1.1 Billing Group
 Generate e-bill 50 250 1,500 1
 Print bill 50 250 500 1
 Generate reminder notice 10 25 250 1
 Process payment 50 250 500 2
 Adjust bill or payment 10 25 150 1

E.4.1.2 Publisher Ordering Group
 Order from publisher 10 25 150 1
 Receive and store 10 25 150 1
 Pay publisher 10 25 150 2
 Adjust order or receipt 1 10 50 2

E.4.1.3 Marketing Group
 Data mining query 10 25 250 5

E.4.2 Transaction Lengths

Each transaction length in this table includes both the input and response lengths.

 Transaction Length in kilobytes (KB)
 Median Average

 Generate e-bill 2 2
 Print bill 1 1
 Generate reminder notice 1 1
 Process payment 1 1
 Adjust bill or payment 2 2
 Order from publisher 2 2
 Receive and store 2 2
 Pay publisher 1 1
 Adjust order or receipt 1 1
 Data mining query 2 8
 E-mail 1 2

E.5 GROWTH PROJECTIONS

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.180

The system must be scalable or upgradeable to support book club member growth rates
of 15% per year, and order volume growth rates of 25% per year, for the next four
years.

The growth is expected to be achieved primarily by providing an enhanced web site for
book club members and potential members. For this reason, the mix of books sold over
the Internet versus through the traditional channels is expected to change, as follows:

 Time Frame Percentage of Books Sold
 By Traditional Channels By Internet

 This year 70% 30%
 1 year ahead 50% 50%
 2 years ahead 10% 90%

Please note that this table does not include default orders. By default, members receive
the monthly book selection without placing an explicit order. A book club member must
state explicitly that he or she does not `want the book of the month; otherwise the book
is shipped to him.

E.6 CHANGING MIX OF DEMANDS

The mix of ordering demands is expected to evolve to [10% traditional channels – 90%
web], with a corresponding expected shift of work from the telephones to the web. This
means that the internally generated work load in response to telephone calls is
expected to fall over the next 5 years, not rise, even after allowing for the overall growth
in business volumes. So the available or spare CTI (call center) capacity will effectively
increase.

E.7 SERVICE LEVEL AGREEMENTS (SLAS)

A separate service level agreement has been developed for each of the three
operational groups, the customer service group, the catalog publishing group, the
warehouse distribution group. Each service level agreement has been signed by the
manager of the pertinent business group and by the manager of the information
systems group. The adherence to the service level agreements will be monitored and
reported to senior management monthly, and the information systems group will be
evaluated in part on their ability to satisfy the service level agreements.

The following statements summarize the key points in each of these service level

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.181

agreements. The agreements state that, for priority 1 features under normal operating
conditions (e.g., with an average work load), the internal users’ response times should
be less than 0.5 seconds, 90% of the time or better, on the client machines. (Priority 1 is
the highest priority.) Under peak load, the internal users’ response time should be 1
second or less, 90% of the time. This response time goal must be met for each
business unit individually, such as the customer service group, the catalog publishing
group, and the warehouse distribution group. In other words, it is not sufficient if the
average response time across all the business units meets this goal, while the average
for any one business does not meet the goal.

For priority 2 features, the internal users’ response times should be less than 2
seconds, 90% of the time or better. For features with priority levels 3 or more, no
response time guidelines have been established as part of the SLAs.

For the external users who visit the web site, the requirement is that the book club’s
web site is “noticeably faster” than competitors’ web sites. It has been determined that
this means that the book club’s home page on the web site can be downloaded in no
more than 4 seconds on average, under an average work load, and no more than 10
seconds under peak load. These times are measured from when a user clicks to initiate
an action until when the user starts to see a response, e.g., when a page starts to be
rendered, not when the page is fully visible. These response time targets are the
averages for all web site visitors. (A person using a 9.6 Kbps modem will have a slower
response than someone with a dedicated T1 line.) The book club also anticipates that
these web-based response time targets will need to be revised at least once every 6
months, and tightened, as competitors’ web services become progressively faster.

On-going processes will need to be put in place, to monitor and report the level of
compliance with the SLAs during the on-going live operation of the system. Developing
these mechanisms to monitor and report on SLA compliance is not part of the scope of
the performance test project.

The service level agreements address other areas besides response time and
throughput, such as acceptable levels of errors in processing, system availability, etc.,
but these areas are outside the scope of the performance testing.

E.8 SYSTEM DEVELOPMENT AND FEATURE TESTING METHODOLOGIES

The new book club order processing system is currently in the process of being
developed. Where possible, the developers are re-using existing software components,
which have either been purchased from external sources or derived from other internal

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.182

systems.

Rapid application development (RAD), which is also called the iterative spiral approach,
is being used by the developers. In this approach, the feature testing starts early and
overlaps development, and components and sub-assemblies of components are tested
as they become available, and then re-tested as the components are debugged or
enhanced.

There is a feature testing team, which has been organized to test the features of the
new order processing system. This team is not responsible for performance, load or
stress testing, but its members have been asked to cooperate and provide assistance to
the performance test team, as appropriate and without interfering with the feature test
project.

The developers and testers are planning to build component-level test drivers, in order
to start unit-testing each major software component as soon as it becomes available.

E.9 AUTOMATED TEST FACILITIES

This feature testing team is in the process of building a library of automated feature test
cases for each of the features listed above. Depending on the criticality, risk and
complexity of each feature, the library is expected to contain anywhere from one to ten
test cases for each feature.

These test cases are being built and will be executed and maintained by using
WinRunner, a tool from Mercury Interactive of Sunnyvale, CA. The feature testing team
has purchased five copies of WinRunner, which could be available for performance
testing when the feature testers are not using them. Note that the mention of any
particular tool in this case study, such as WinRunner, should not be construed to be a
recommendation or endorsement of that tool.

E.10 TEST CONDITIONS AND CONSTRAINTS

At this time, the senior managers have not set a deadline or budget limit for this
performance testing project. This does not mean that they will be willing to accept an
indefinitely long time frame or an indefinitely large budget for this project, but they are
waiting until they hear what you propose.

IV. Specifying the Tests

 Copyright © 2005 Collard & Company

 Case Study 1.183

Exercise 2.19: Transitioning to Post-Delivery Live Performance
Monitoring

Introduction

xxx

Exercise 2.20: Team Discussion of the Remaining Test Issues

Instructions

Together with your teammates, compare your answers to the previous questions. The
intention is not necessarily to reach consensus, though that’s fine, but to obtain a
deeper appreciation of the issues by seeing others’ perspectives. Note that we are not
looking for polished and detailed answers at this time, just an in initial sketch of your key
thoughts, ready for discussion with the whole class.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.184

APPENDICES

APPENDIX A. BASIC DEFINITIONS AND CONCEPTS

Performance testers use a wide diversity of names for the same concepts, and the
same word often is used for several different things, indicating the immaturity of the
field. We have no universal consistency in how people use terms like performance test
and robustness test. I can say that the definitions provided in this book are as much or
more in the mainstream as any others.

Acceptance Criteria The criteria to be met before a system or component can be accepted.
Acceptance Test A test to determine if a system meets its acceptance criteria, usually performed by
the users, a QA group or an independent third party on behalf of the users, after the system test and prior
to accepting the delivered system.
Accuracy vs. Precision The word accurate means correct and on target. The word precise means
exact, attentive to detail. Precise is not the same as accurate. Accuracy means correctness but within
some tolerance for error, while precision means specificity. If I say the time is now 10.12 am and exactly
36 seconds Eastern Standard Time within New York, I’m being precise to the nearest second but not
necessarily accurate. (My watch might be a few minutes off.) If I say that it’s now about 10.15 am, I am
accurate but not as precise.
Active / Inactive Status The state of an interactive session. During a visit, there can be a string of
both active periods (where the system is doing something related to this session) and interspersed
inactive periods (where the system is waiting).
Active Object An object that currently is active, i.e., is executing or is waiting ready to be triggered by
an event.
Activity A work task or an event.
Actor In UML and object-oriented programming, an object which is active concurrently with other
processes and can interact with other actors.
Ad Hoc Test A testing activity where the tester randomly tries the system's functionality. See also
monkey testing.
Adaptive Learning The process where software uses feedback to calibrate and adjust weighting
factors over time, so that it comes closer to producing the desired outcome.
ADL Assertion (or API) definition language: language used to write assertions and generate test cases
for them, or for APIs.
AES Application environment specification: guidelines from the Open Software Foundation for user
interfaces, aimed at providing a consistent application environment on different hardware platforms.
Agent A piece of software which runs autonomously, usually to help a person achieve a goal. An agent
has its own attributes, and performs tasks on behalf of another entity (another agent or a person).
Agile Method A software development approach which seek to minimize the paperwork, bureaucracy
and delays which sometimes occur with traditional development methods.
Agile Test Testing practices on projects using agile methodologies, and emphasizing the ability of
testers to respond adroitly to changes.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.185

AI Artificial intelligence.
AKA Also known as.
Alert A designed-in indicator of a problem with a system in operation. Can take the form of an audible
alarm, visual error message, electronic signal, etc.
Algorithm Test An algorithm test helps to ensure that the algorithm selected for a task is the most
appropriate one, has been implemented correctly, is stable and comes to closure with an acceptable
result, and meets all accuracy, timing, and sizing requirements.
Algorithm A systematic procedure with well-defined rules to solve a problem in a finite number of steps.
Allocation Assignment of a portion of memory by an operating system to a particular application as and
when requested by that application.
Alpha Test Usually conducted within a software vendor, the last level of internal test prior to a (beta)
release. Roughly analogous to a system test within an IS shop. In a vendor-customer relationship, alpha
testing is the last level of testing conducted internally before external customer testing (beta testing) and
installation. An alpha test can be performed by the vendor or by a customer in a controlled environment at
the vendor's site or a third-party certification site. The software is tested in an environment which is as
close as feasible to the live operational environment.
American Standard Code for Information Interchange (ASCII) The primary set of codes used to
represent characters in computer systems. ASCII uses a unique seven-bit pattern for each letter of the
English alphabet, number between 0 and 9, or special character such as the asterisk.
Analytical Model Uses queuing theory, statistical formulas and algorithms to predict response times
and utilization projections from work load characterization data and essential system relationships.
Analytic models require input data such as arrival rates, user profiles, and service demands placed by
each work load on various system resources. System monitors and accounting logs can provide most or
all of the required information. Most analytic models allow for the use of various assumptions in order to
keep the solution simple and efficient. The affect of these assumptions on the accuracy of your
conclusions must be considered when making recommendations. Analytic modeling is best used when a
numeric prediction is needed, when work load forecasts are fairly accurate, when a best-case/worst-case
situation holds, or when an accurate answer can save significant money, time, or headaches.
Anchor The location of a hyperlink in a Web page or document.
Anomaly A deviation from expected behavior. See: bug, defect, error, discrepancy, exception, fault.
ANSI American National Standards Institute, which provides many U.S. standards pertaining to software
and quality.
API Application program interface: a term for the interface by which an application program gains access
to operating system and other services, defined at source-code level.
Applet A small application, often downloaded from a remote server and run in a controlled environment.
Typically written in a language such as Java for execution by a Web browser.
Application Software designed to fill specific needs of a user; for example, software for navigation,
payroll, or process control. Contrast with support software; system software.
Application Program Interface (API) (1) A set of functions that provide application software
developers with access to functionality provided by the operating system or support software. (2) The
software components within the operating system which provides the service to the application. (3) A set
of software calls and routines that can be referenced by an application program in order to access
supporting system or network services. (4) A standard interface between an application and an operating
system or other support software.
Architecture The structure and organization of a system. Synonym: design.
Artificial Work Load An artificial work load is used primarily in isolation tests, where the causes of a

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.186

particular problem must be diagnosed. The demands in this artificial work load are engineered to force
the problem to occur repeatedly.
ASCII American Standard Code for Information Interchange.
ASIC Application-Specific Integrated Circuit: a hardware chip designed and hard-wired to perform a
particular function.
Assembler A software development tool which translates assembly language into machine-language
instructions which the processor can understand and execute.
Assertion A state which must exist in software or its environment at a particular point during the
software’s execution. An assertion normally is checked continually during execution.
Assertion Check A statement inserted into software to verify an assertion before continuing with the
execution of the software, and to trigger the appropriate action if the assertion is not true. See:
instrumentation.
Asynchronous An event which is not, or does not have to be, synchronized with other events or
activities.
Audit (1) An examination of a process or outcome to assess its effectiveness, correctness and
compliance with standards. (2) An independent review of a system, database, system environment or
operational procedure to determine whether it complies with standards or generally accepted practices.
Auditability Can the accuracy and trustworthiness of the system easily be confirmed?
AUT Application under test. Similar to SUT (system under test).
Automated Test Planner A tool that provides fill-in-the-blanks templates of testing projects, test plans and
test cases.
Automated testing Unattended testing which does not require a person to be present to execute the
test cases. The testing is controlled by an automated tool, without the need for human intervention.
Availability This is the percentage of uptime for a system or component over a given duration and
under a given load, so testing availability is essentially a process of recording when the system is up or
down, under both typical and stress working conditions. Availability is closely related to reliability and
robustness. Availability measures can either include or exclude planned downtime, leading to apples and
oranges comparisons. Another complication in measuring availability is that many systems can operate in
a degraded mode if the need arises, e.g., if part of a network is down the other parts will still function.
During this degraded mode, some users may experience limited availability.
Bachman diagram A style of entity-relationship modeling.
Back propagation A method for adaptive learning which is based on the difference between the
desired and actual output. The differences are used to adjust the weights assigned to various factors
which influence the outcome.
Back-end (1) The back-end of a project includes all activities after the coding is complete (assuming
that testing is not done in parallel with coding). (2) The portion of a system architecture which is not
externally oriented, e.g., not customer-facing or vendor-facing.
Backhoe Detector A joke name for a telecom cable – the cable attracts the destructive backhoe to
where it is buried.
Back-to-back testing See parallel testing, volume testing.
Backus Naur Form (BNF) A formal method for the syntax specification of computer languages.
Bad Day Test This is based on the premise that we all can hit the wrong button or have a bad day. If
someone does push the wrong button, we want to ensure that we and they do not suffer any horrendous
consequences. Bad day testing is similar to usability testing and operator error testing.
Bandwidth A network's or communication link’s bandwidth is the maximum number of bits that can be
transmitted over the link in a given time interval, usually one second. Bandwidth determines how much

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.187

traffic a network can carry. The bandwidth depends on the physical wire itself and on whatever network
device is used. Bandwidth is the amount of information that can be transmitted in a given amount of time
through a network connection. Bandwidth is usually measured in bits per second (bps) or cycles per
second (Hz).
Baseline (1) A previously tested version of the system, against which a parallel or regression test is
known to have passed before the system has been modified. (2) The “before” version of the output
results from the previous test, e.g., the response time of the previous version of the system. (3) A version
of a system, an operational environment or a test suite which is documented in sufficient detail to re-
create it if necessary, provide a basis for further evolution, and can be changed only through a controlled
procedure. (4) A controlled earlier version of a system, before changes are introduced. The most
common use of the term baseline is the measurement of the performance of an existing system or
operation, as the “before” part of a before-and-after comparison. We measure the baseline in a live
environment which will disappear (or at least be modified), when the change is implemented. The
baseline helps us understand the current behavior if the metrics available are informal, anecdotal (“it runs
slowly”), untrustworthy or politicized, and if it is important to later show evidence of the claimed
improvements caused by the change. See: release, version.
Baseline Point The point at which a deliverable produced during the software engineering process is
placed under formal change control.
Baseline Test This approach measures the performance of an existing system or operation, as the
“before” part of a before-and-after comparison which cannot be done after a change has been
implemented. We measure the baseline in a live environment which will disappear (or at least be
modified), when the change is implemented. We need this measurement to understand the current
behavior if the metrics available in the existing situation are informal, anecdotal (“it runs slowly”),
untrustworthy or politicized, and if it is important to be able later to show evidence of the improvements
(or lack of them) caused by the change. A baseline test may not be the same as the volume and parallel
test methods. While we compare the same performance characteristics of the new system with those of
the baseline system, e.g., the response time, in a baseline test we do not necessarily re-run the same
load with the new system. Often, the new system does not have exactly the same features and
transactions as the old one, so we cannot re-use the old load without modification. (Although the load on
the new system should be similar to the old load, in order to avoid apples-and-oranges comparisons.)
Basis Path A unique path through a software component in which no repetitions of loops occur (i.e., a
loop cannot be taken more than once).
Batch Processing A mode of system operation where a batch of input transactions is assembled prior
to execution and processed together, not processed as soon as they arrive. The batch processing, once
started, is expected to proceed to completion without interaction. Contrast with event-driven,
conversational, interactive, on-line, real time.
Batch Test Batch testing requires the preparation and submission of batches of test transactions, the
preparation of test data bases to be accessed and updated by the transactions, and the evaluation of the
test results after the complete batch has been processed. On-line processing is normally not part of this
batch testing.
Bebugging A method where errors are deliberately introduced in order to provide a "treasure hunt"
motivation for testers and debuggers to search for bugs. See error seeding, software fault injection.
Benchmark A standard work load used in testing, instead of one based on an operational profile (OP).
Benchmarks are often industry-wide, e.g., the TPC-C and TPC-W benchmarks. Benchmarks are
convenient, but the question is how well the benchmark can substitute for an OP – how well it represents
reality. Benchmarks are best used to compare two or more systems’ behavior under the same load, or
different application system versions, or the same system version running on different hardware, and so

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.188

Boolean Variables and operations on variables which are binary.
Boolean Test A test of Boolean computations (i.e., computations that use Boolean logic operators and
operands such as and, or, nand, xor) -- these computations are common in aerospace.
Bootstrap To initialize or start up. See start-up code.
Bottleneck Limitation on system performance at a point where there is no spare capacity.
Bottleneck Identification and Isolation Test These activities are really diagnosis and debugging,
rather than “pure” measurement and testing, but the performance testers often do them as a service to
the developers and system architects. We need these activities because it is very difficult to tune a
system without knowing where the bottlenecks are. Generally, we insert invasive probes into the system
we are testing and its environment to monitor for bottlenecks. These probes look out for conditions like
buffer overflows, a set of ports which are continually busy, bandwidth utilization in a network which is near
the maximum available bandwidth capacity, and so on. The performance testers need to have the right
test equipment, test tools and expertise to conduct the resource utilization and bottleneck identification
activities (more about this later). Sometimes the bottlenecks are obvious and can be quickly found without
sophisticated monitoring and diagnosis tools, once the performance test results highlight them and
motivate us to go and examine them.
Bottom-Up Test An approach to integration testing where the lowest level components are tested first,
then used to facilitate the testing of higher level components. The process is repeated until the

on. Any benchmark that has been in existence long enough to become industry-standard has been
studied extensively by system vendors: operating systems, compilers, and in some cases hardware have
been tuned to run the benchmark with lightning speed.
Benchmark Test (1) A test in which a benchmark mix of demands in run against the system being
tested. (2) Testing a system by comparing its behavior to another system (the benchmark).
Beta Test (1) Test where a preliminary version of the system is tried by end users. Beta testing is a
vendor's equivalent of a pilot test (usually with a greater number of participating sites than for an in-house
pilot), where a pre-release version of a product is distributed on a trial basis. (2) Testing conducted by
customers or users on a vendor’s product, before the product is widely shipped, installed and placed in
live operation by many users. See: field test, pilot test
Big Bang An integration approach where components and subsystems are connected together with little
or no integration testing, on order to speed the process and conserve resources for testing of the fully
integrated system. Unless the components have previously been integrated and tested to show they work
together in prior versions, it is suitable only for small systems.
Binary A variable or a decision which can have one of only two possible values, i.e., 1 (true) and 0
(false).
BIST Built-in system test, usually incorporated into sophisticated electronics such as semiconductor
chips.
Bit Binary code which can be either 1 or 0. Virtually all computers process and store data in the form of
bits.
Bitmap A format for storing graphics files, usually with the suffixes like .gif or .bmp.
Black Box A view of a system or subsystem that is based on its externally observable behavior rather
than its internal structure.
Black Box Test Any test that does not use knowledge of the internal structure of the system, but only
checks the system conforms with the expected behavior which is visible externally. Black box testing
traditionally has involved testing a system as a whole; however, with the advent of multi-tiered systems,
black box testing has come to also refer to testing tiers or components of a total system since those tiers
are often entire systems in themselves with only loose ties to the other tiers of the system.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.189

component at the top of the hierarchy is tested.
Boundary A point at which there is an expected change of behavior in a computer system, such as the
upper limit of the allowed range of a variable.
Boundary Test A test which focuses on the boundary values or limit conditions of the software being
tested.
Boundary Value Analysis A technique for selecting test data on the boundaries of the input domain
or output range. BVA is similar to equivalence partitioning but focuses on "corner cases" or values that
are usually just in and out of range, as defined by the specification.
BPM Business process modeling.
BPR Business process re-engineering.
Branch A decision point or a source code instruction which causes the software being run to jump to a
new point in the program sequence, rather than execute the next instruction. Synonym: jump, decision
point.
Branch Coverage The percentage of software branches covered in testing. For 100% coverage, every
branch at each decision point is exercised at least once in testing. Caution: in some definitions, branch
coverage is exactly the same as path coverage, while in other definitions the terms branch coverage and
path coverage can differ.
Branch Test Testing in which selected branches in the program source code are tested. See path
analysis.
Breakpoint (1) The point in a piece of software at which the software engineer starts or stops the
software execution during debugging. (2) A location in software at which control of the processor
switched to a debugger. (3) The point at which a system fails as its load increases.
Breakpoint Test In this type of stress testing, we increase the load until the system fails. (Or we
increase the load as much as is feasible within the constraints of the test environment, if the heaviest load
is not sufficient to force the system to fail.) The purpose is to determine the load at which the system
breaks, where (at what point within the system) the breakage occurs, and how the breakage is
manifested (how the system fails, e.g., a database overflow, or a network link goes down).
Browser A software product which is designed to interface with the World Wide Web and uses HTML
files.
Buffer A holding or staging area, generally used as a FIFO queue.
Buffer or Queue Overflow The usual result of an attempt to add an item to a buffer that is full.
Bug An unwanted and unintended property of a system, especially one that causes a malfunction.
Build (1) An integrated collection of software components (modules) which are tested as a group. (2)
The process of linking software components to make a build.
Build & Load Tool These tools compile and integrate the latest versions of the SUT (system under test)
components, integrate related files such as help and configuration files, to form a new executable version
of the SUT. The tools also load the SUT on to the test and the live operational platforms.
Built-in System Test (BIST) Any embedded self-test capability of a system.
Bus A set of hardware paths (traditionally electrical lines) which connect hardware components, e.g.,
links the processor to the peripherals.
Byte A data unit which contains a string of bits but which is smaller than a full computer word. A byte is
usually 8 bits.
C/S Client/server.
Cache A small fast memory holding recently-accessed data, designed to speed up further access.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.190

Calibration Test This type of testing is interleaved with tuning, and its purpose is to provide feedback
on the consequences of each iteration of tuning. The test work load is kept the same, and typically the
testers strive for exact repeatability of the test run from iteration to iteration of tuning.
Call chain The hierarchy or sequence of linkages among software components which work together as
part of a system.
Call Pair Two linked software components: the combination of a calling software component and a
called software component, where one calls (references or accesses) the other.
Call Pair Coverage Measure of the number of call pairs executed.
Capability Maturity Model (CMM) A method for assessing the effectiveness of software engineering
organizations, developed and supported by the Software Engineering Institute at Carnegie-Mellon
University (SEI).
Capacity Spare capacity is the room to grow -- the ability of a system to support an additional work load
without degrading performance to an unacceptable degree.
Capacity Test This type of testing measures whether the allocated resources are sufficient for the job,
how much spare capacity still remains in system for further growth of demand, and at what point in the
growth the resources supporting the system will need to be upgraded. This is the point at which the
response time or throughput become unacceptable as the demand grows.
Capture/Replay Tool An automated test tool that records test input as it is sent to the software under
test. The input cases stored can then be used to reproduce the test at a later time. Most commonly
applied to GUI testing.
Cause-Effect Graphing A graphic technique for identifying test cases based on the relationships of
the outputs (effects) to the inputs (causes). The cause-effect graphing technique has been automated in
commercially available tools, such as SoftTest from Bender Associates, which automatically generate test
cases from a description of the functionality or logic. Cause-effect graphing can identify logical
inconsistencies and omissions in the functionality, so the method and tools can be used to "clean up" the
system requirements definition.
CCITT An ITU committee which sets telecommunications standards and recommends
telecommunications systems.
Certification Formal accreditation that a system conforms to defined standards.
CGI Common Gateway Interface, an Internet protocol.
Change Control (1) The organized process for evaluating and taking action on proposed changes to a
system or its environment. (2) The process used to control all changes to software, its environment,
documentation, test case libraries, and so on. Synonym: change management.
Change Impact Assessment Assesses the impact of a change or a group of changes to an existing
system.
Change Management The controlled process of introducing changes into an existing system or
component or a system in development.
Change Request The official, documented mechanism for requesting a change.
Chaos or Perturbation Test (butterfly effect) Testing with small changes to the conditions. In chaos
theory, a tiny change in the initial conditions or the input data values to an inherently unstable system can
cause large differences in outcomes. For software, chaos theory implies that small and apparently
insignificant changes can lead to large undesirable changes elsewhere in the system.
Character A symbol such as the letter A which requires one byte of storage.
Checkpoint Interim point in a process where the results to date are checked before proceeding.
Chen diagram. A form of an Entity-Relationship data model, named for Peter Chen.
Child version A sub-version derived from a parent version. See change management.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.191

Class The general description of a family or a group of related objects.
Class Library A library of re-usable classes for use in object-oriented programming.
Cleanroom (1) A dust-free lab or manufacturing facility for electronics and nanology. (2) An inspection-
intensive software development approach to produce software with extremely low defect rates. See
software cleanroom.
Client (1) A system or process that requests a service from another system or process. (2) The client
part of a client/server architecture. Typically, a client is a personal computer or workstation which relies
on a server to perform operations. (3) The person or group who is paying the bill for system development
and maintenance.
Client/Server A network of connected computing devices which are either servers (these provide
services) and clients (these are serviced).
Client Side Think Time The time the browser or other client side application spend processing the
data received from a remote server. Must be accounted for when discussing true user experience.
CM Configuration management.
CMM See Capability Maturity Model.
Code Software statements or instructions. See: program, source code.
Code Complete Milestone in software development where functionality is implemented in entirety; bug
fixes are all that are left. All functions found in the Functional Specifications have been implemented.
Code Coverage A method to determine which parts of the software have been executed (covered) by a
suite of test cases and which parts have not been executed and therefore may require additional
attention.
Code Freeze The point after which no changes can be made to a base of source code except to fix
severe defects, and then only under strict change management procedures.
Code Inspection A formal review technique where the author (a software engineer) reviews his or her
source code with a group of peers.
Coding The process of writing software, or the automated generation of source code.
Coding Standards Written guidelines which define the programming conventions to be used by the
software engineers.
COM Common Object Model. A standard from Microsoft to guide the operation and interactions of OLE
components.
Commercial-off-the-shelf software (COTS) In the government and military, vendors’ application
software packages which are pre-built and available for acquisition.
Common Gateway Interface A protocol used by Web-based systems to communicate with their
environments.
Commonality and Variances Test technique to develop test cases based on similarities and
differences. Group together test situations, based on what they have in common. Two or more situations
are equivalent if the successful test result from one situation means that the others would also work
successfully and thus do not need to be separately tested. For tests that are equivalent, execute only (a)
a representative or random example of all the possible tests, or (b) the worst-case test. Identify the
variances that are not covered by these common tests, and ensure these variances are covered in testing
also.
Communicating Sequential Process A model of software operations where processes
communicate with other through semaphores.
Communications Test The testing of communications systems and networks, or the communications-
specific components of more comprehensive systems
Comparator A software tool which compares two versions of data files, such as the versions of a test

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.192

results file before and after a modification, and identifies the discrepancies.
Compatibility Does the system operate in the same way across different computer and network
configurations, platforms and environments, and with different mixes of other applications? Is it portable?
Is it backwards-compatible? Is a new system compatible with the existing technical infrastructure?
Compatibility and Configuration Test This method considers the various configurations in which a
system can be used, and how to check for compatibility or consistent behavior across these
configurations. (1) Testing for the similarity of system functionality among different versions of a system,
or across the different operating environments in which the system runs, or for compatibility of the
interfaces to other systems with which the system communicates. (2) Testing whether software is
compatible with other elements of a system with which it should operate.
Compiler A software development tool which translates the high-level source code written by software
engineers into the machine-language instructions that a particular processor will execute.
Complexity Analyzer These tools analyze software complexity, predict defects, and generate test cases
based on the structure of the software code, using McCabe's cyclomatic complexity measure or similar
techniques.
Compliance Test Testing and comparing a system to a defined standard and determining its degree of
compliance with the standard.
Component (software component). (1) A part of a software system which has a distinct purpose and
identity, and cannot be decomposed into smaller components, but only into source instructions (lines of
code). (2) A minimal software item for which a separate specification is available. Synonym: module.
Component Metric Any measurement related to hardware resource or sub-set of user experience
measurements. Some examples include, CPU utilization, RAM usage, database seek time, etc.
Component Re-use The ability to re-use a software component, possibly after adapting it to the new
use, or a design pattern, portion of a requirements model, test case, etc.
Component-Specific Test This type of testing examines the performance and robustness of one
system component (or sub-assembly). It can be done as soon as the component is ready, before other
components are built and well before the fully integrated system is ready for testing. By examining the
behavior of one component in isolation, this testing makes it easier to isolate and pinpoint problems. And
component bugs which are found earlier can also be eliminated earlier, improving the initial quality of the
fully integrated system when it is delivered for testing. Component-specific testing requires component
test drivers. These can be expensive to build.
Compression Process of reducing the size of a data file to take less network bandwidth and storage
memory.
Concurrency The occurrence of two or more events at the same instant or during the same brief time
interval. If events are not simultaneous, to be considered concurrent they should occur closely enough in
time to have a non-trivial chance of competing for the same resources, or of interacting and possibly
interfering with each other. The occurrence of two or more activities during the same time interval.
Concurrency can be achieved by interleaving or simultaneously executing two or more threads.
Concurrent Users (or Visitors) The total number of overlapping users who are actually using the
system or who have sessions underway at a specific instant in time. These users are all connected to the
system, but may be in different operating states (ready, waiting for response, running), and may or may
not be performing the same tasks. The system typically must dedicate system resources to manage the
session of each connected user. Caution: has been called a “dangerously misleading statistic”.
Configuration The state or settings of a system and its environment, to ensure the system runs in the
desired manner.
Configuration Control The control of changes to the configuration settings in software or its support
environment. See change control, configuration management.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.193

Configuration Item The software component, support hardware, document or data which is being
controlled.
Configuration Management The process of managing the different states which a system and its
environment can be in. See version control.
Configuration Test Configuration testing is testing the product under a different number of hardware or
software configurations. Hardware and software can sometimes have an unlimited number of
configurable items and this would be too much to test, so it is advisable that the product be tested with, at
least, the minimum, the maximum configuration and a few different configurations in between. Verifies
performance impacts from changes in software components, hardware, processor speed, memory size,
etc. (1) Testing of an application or a technical environment (such as a DBMS) for compatibility across
different configurations of a system, e.g., different client/server network configurations. (2) Use of
information about the internal state of the environment to check the stability of the system in different
configurations. (3) Checks that a system works acceptably in the various different configurations to which
it can be set.
Conformance Test The process of testing that an implementation conforms to the specification on
which it is based. Usually applied to testing conformance to a formal standard.
Connectivity Test See interoperability test.
Contention Test Verifies the target-of-test can acceptably handle multiple actor demands on the same
resource (data records, memory, etc.).
Context-Driven Testing The context-driven school of software testing rejects the concept of best
practices which are not context-specific, and the “one approach fits all” tone of some test standards and
processes.
Context Switch The process of switching from one task to another in a multitasking operating system.
Conversion Test (1) Checks the integrity of a system conversion, change in environment or database
migration. (2) Testing of programs or procedures used to convert data from existing systems for use in
replacement systems.
Corner Case A combination of extreme but valid conditions.
Corrective Action An action taken to prevent or recover from a problem.
COTS Commercial off-the-shelf software.
Coverage Percentage of testable conditions that actually are tested. The measure of testing
completeness for a particular testing strategy.
Coverage Analyzer Like path analyzers, coverage analyzers and profilers work with the source code and
are language dependent.
Coverage Tracking Tracking the conditions which are being covered during the execution of a test
suite. Using tools, automatically track and report which conditions (i.e., paths or branches) have actually
been tested. Helps understand the completeness of testing.
CPU Central processing unit -- the processor or brain of a computer; the part of the computer which
executes instructions.
Crash An abnormal system termination of action.
Critical Section A sequence of software instructions which must be executed in sequence and without
interruption. See also race condition.
Cross-Compiler A compiler which operates on a different hardware platform or operating system than
the one for which it produces machine-level processor-specific (object) code.
Cross-Functional Analysis While classic functional analysis focuses on testing the individual
functions of a system, cross-function analysis provides an additional test of the relationships or
interdependencies among the functions. This technique requires sufficient understanding and knowledge

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.194

of the system to be able to identify the relationship among the functions. It is also called feature
interaction testing.
Cross-Platform Test Testing to ensure an application system works the same way on different
platforms (e.g., Windows and Unix), or alternatively that components of an overall system work together
across different platforms.
Customizability. This is the built-in flexibility to customize the system for different users. It is similar to
configurability and maintainability.
Cyclomatic Complexity A measure of the logical complexity of an algorithm, used in white-box
testing, it is the count of basis paths in a software module. Used as a measure of the difficulty and likely
bugginess of a software component or algorithm. Also called McCabe’s measure.
Daemon A software program which performs a specific function on a computer system.
Data Center Operations Test The purpose of these tests is to ensure that the data center and/or
network administrators can safely proceed with the installation process, without inadvertently affecting
other operations. Usually not performed by the users as part of their acceptance test, but performed in
parallel by data center operations and network professionals.
Data conversion test. Ensuring that data has been converted correctly (for data base conversion), or that
the system still performs appropriately after migration to a new technical environment (e.g., upgrade to a
new release of the network software on which an application depends).
Data dictionary. A list of the definitions of the data items, together with descriptions of their attributes,
which are used by a system or stored in a database. The database contains the definitions of all data
items defined during analysis.
Data element. See data item.
Data field. See data item.
Data flow anomaly detection (DFAD). Check for anomalies in data use which may indicate a
programming error: (a) a variable is referenced without previously having been assigned a value, or (b) a
variable is assigned a value but not subsequently referenced.
Data flow diagram (DFD). A visual modeling notation which shows the flow of data and the series of steps
which manipulate data with in a process or a system, and represents a functional decomposition of the
system.
Data integrity. Can the accuracy of stored data be sustained?
Data item. A specific, atomic piece of data. Also called a data element, a data field or an attribute.
Data modeling. The method of identifying data needs, defining the data relationships, organizing and
structuring the data, and defining the data attributes, so that it can be implemented as a database. See
entity, relationship, attribute.
Database. Organized, structured repository of data.
Database demographics. Profile of the occurrence and representation of data in data bases (e.g., the
breakdown of foreign orders by country and type of customer) and data usage patterns, in order to
determine what types of data values (e.g., what types of customers) to test.
Data Base Integrity Manager These tools check and maintain the test data base(s). They check the
business rules and referential integrity (e.g., no order may exist without being related to a customer),
protect the test data, and correct test data that has been corrupted by SUT errors.
Database Integrity Test Checking the integrity of data field values stored in a database, by sampling
and comparing the sampled data to known correct reference data. Can include testing the data field
integrity, business policy rules, access controls, and reliability of the processes which maintain or refresh
a data base.
Data-driven testing. Testing in which the action of a test case is parameterized by externally defined data
values, maintained as a file or spreadsheet. A common technique in automated testing.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.195

Deadlock A situation in which a set of interdependent tasks is blocked, with each one waiting for an
action by another one of interdependent tasks. A deadlock is a situation in which two computer programs
sharing the same resource are effectively preventing each other from accessing the resource, resulting in
both programs ceasing to function. Here is the example: Program 1 requests resource A and receives it.
Program 2 requests resource B and receives it. Program 1 requests resource B and is queued up,
pending the release of B. Program 2 requests resource A and is queued up, pending the release of A.
Now neither program can proceed until the other program releases a resource. Deadlock often arises
from adding synchronization mechanisms to avoid race conditions.
Deadlock Test This type of testing attempts to stress a system by locking a database through
transactions which interfere with each other.
De-allocation The process of freeing memory when an application no longer needs it. xecution.
Debugging. The act of diagnosing a problem and finding and correcting its cause (an error or defect). The
process of finding and removing the causes of software failures.
Decision table test. A technique to develop test cases from decision tables. Develop a decision table
showing the decision criteria of a process, and the actions to be taken for each viable combination of
these criteria. Test each distinct column in the decision table.
Defect. The specific cause of a failure. Synonym: bug, fault.
Defect propagation. The tendency of a defect, left unfixed, to cause more defects.
Defect Tracking Tool Used to capture, track and analyze defects, and maintain a defect repository. Also
commonly called a problem reporting tool.
Degraded Mode of Operation Test Systems are designed to use a given set of resources, such as
hardware, networks and databases. Their users expect many systems to provide ongoing service, even
at reduced rates of performance and capacity, when not all the resources are working (e.g., a database is
unavailable). The purpose of degraded mode testing is to determine whether the system can still provide
the reduced level of service as expected. An example of a degraded mode test is to deliberately power
down an application server, in a server cluster with redundant application servers, and attempt to
continue normal operation Test to ensure that a system continues to operate even after portions of the
system become inoperable, continuing to provide either the full, normal or less-than-full capabilities of the
system. Examples, testing the back-up dial-up mode when the direct line connection is down, testing
capabilities in a multi-server network when one of the servers is disconnected. Unplug the machine or
network when in the middle of executing the application. Press other keys or attempt to do another
operation while executing the application. Decrease the amount of memory or system resources available
for the application.
Dependability The term “dependability” is often used to summarize the degree to which we can rely on
a system. This term is broader than just reliability and recoverability – it encompasses security, safety
and data integrity too.
Design (1) The activity which translates the system requirements into a blueprint of the proposed
technical solution, which is the system design. (2) The result of the design process – the specification of
the technical solution to meet system requirements. See: architecture, design specification.
Design for Testability As systems become more complex, it becomes more difficult and eventually
impossible to test them adequately unless they have been specifically designed to be testable. Much of a
system's behavior may be hidden and not directly observable from the outside, which severely limits the
effectiveness of non-invasive black-box testing. For example, an internal buffer overflow may be
extremely difficult to observe in testing or in live operation, unless a capability has deliberately been
designed into the system to provide this information. To be testable, a system has to be (a) observable
and (b) controllable. A system is relatively easy to observe if the outputs from that system are dependent
only on the inputs, regardless of the internal state of the system or the state of its supporting

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.196

infrastructure. But is not easy to test without monitoring the internal behavior of the system, if the outputs
are dependent not just on the inputs but also on hidden, transient internal states of the system. Designing
systems for testability is often not done very well. In small, simple systems, the system architecture is
fairly obvious to the test professionals, and there is a ready availability of access points to observe the
internal states of the system. It is in large, complex systems that designing for testability becomes more
important and also, unfortunately, much more difficult. Usually the main problem is one of
communications. Designing for testability requires a solid gray-box understanding of the system.
Desk checking. An individual programmer’s review of source code, before or after compilation, usually
performed by the author himself or herself.
Device driver. A software module that hides the details of a particular peripheral and provides a high-level
programming interface to it
DFD. See data flow diagram.
Diagnostic Tool These tools monitor the SUT, to gather data which is used later to pinpoint, isolate,
debug and fix problems. They may place invasive probes into the SUT, or provide information about the
environment. For example, tools can provide information to analyze the memory contents of the hardware
on which the SUT runs (a memory dump).
Digital signal processor. A specialized processor which is designed for discrete-time signal processing.
DSPs usually support instructions to perform signal processing, such as in telecommunications
transmission and reception.
Dimensional Analysis This is a simple way to find errors in calculations, by checking that the units of
measure (the dimensions) are consistent on both sides of an equation, and avoid comparing apples to
oranges. Consider for example the question of how many miles a car travels in a quarter-hour if it is
traveling at a speed of 60 miles per hour – the answer is 15 miles. We derive the answer by using this
equation: [Distance traveled = Speed multiplied by Time]. Speed is measured in miles per hour and
Time is measured in hours, so multiplying them together effectively means that the dimension of the left
side of the equation is miles (miles/hour multiplied by hours). This should be (and is) consistent with the
dimension of the right side of the equation (also miles).
Disaster Recovery Test Simulating the occurrence of disasters, for the purpose of ensuring the
system's recovery processes are capable. This type of testing uses the disaster scenarios which were
identified in the organization’s disaster recovery plans as a source of test cases. I’ll illustrate this point
with an example of a system failure. In what was considered a major crisis, the Nasdaq stock market
halted trading on a busy Friday in 2001. An employee of WorldCom, which provides communications
services to the stock exchange, had inadvertently forced Nasdaq's communications network to shut
down. (WorldCom later said that testing a new system being developed for Nasdaq had caused the
service interruption. With hindsight, a busy Friday was not a very mart time to run the system test.)
Nasdaq was able to restore service fairly quickly, but a secondary problem blocked its stockbroker clients
from using the system for several more hours. The outage had disconnected all of Nasdaq's users from
their network. When these users attempted to log back in after the network administrators had resolved
the problem -- and all at approximately the same time -- the system’s logging process was unable to cope
with the huge surge of demand. This scenario is similar to the idea, which testers have often tossed
about, of conducting a stress test by having 1,000 people hit the Enter keys on their keyboards
simultaneously (or simulating the same activity with testing tools). So what’s this got to do with the price
of fish? The connection is as follows. Testers often have difficulty identifying stress test cases. These
testers may not be very close to the day-by-day system operation and so have difficulty visualizing how
the system might fail. In addition, the test cases which the testers do identify can seem highly implausible.
Observers may guffaw at the thought of 1,000 people hitting the Enter keys simultaneously: they tell the
testers to “get real”, “give us a break” and “do something worthwhile”. In the case of Nasdaq, their
disaster recovery plan had identified the possibility of tens of thousands of clients trying to log on together

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.197

Dynamic test. One that requires actual execution on computer hardware, networks, etc., as opposed to a
static test. Testing software through executing it. See also Static Testing.
E2E. End-to-end testing
ECO. See engineering change order.
Embedded System A system which is embedded in a device and does not have a conventional user
interface, such as Windows-based GUI. An example is the anti-lock braking system in a automobile.
Embedded systems combine hardware, software and possibly electro-mechanical devices to perform a
particular function,
Embedded system test. The testing of embedded systems, i.e., those which operate directly on some
low-level device such as a video chip or a set-top box.
Emulator. A tool, which usually combines hardware and software, which emulates (stands in place of) a
system for development, testing and debugging purposes. For example, a WAN emulator mimics a wide
area network when a real WAN is not available for testing, and an in-circuit emulator (ICE) emulates a
processor (CPU). See simulator. A device, computer program, or system that accepts the same inputs
and produces the same outputs as a given system.
End to End Response Time Response time measured from the end-user perspective. For example,
the time between when a user presses the “login” button and when the subsequent page is fully loaded.
AKA perceived response time.
End-to-End test. Testing a complete application environment in a situation that mimics real-world use,
such as interacting with a database, using network communications, or interacting with other hardware,
applications, or systems if appropriate.
Endurance Test Checks for memory leaks or other problems that may occur with prolonged execution.
Engineering change order (ECO). A specification of the technical aspects of a change.
Entry criteria. Conditions to be met before a specific activity begins. Entrance criteria are most effective
when the are aligned with the significant risks associated with starting the activity when the criteria have
not been met.
Environment. (1) The supporting infrastructure within which a system operates. (2) The related systems

after a system failure. But the testers had not referenced this document, and so this particular scenario
had never been the subject of a stress test.
Disclaimer. A statement which warns or risks and limits liability.
DNS Domain Name Server, a device that provides Internet addresses.
DOD. U.S. Department of Defense, a major developer and user of software
DSP. Digital signal processing.
Dumb monkey. Automated test tool which has little or no knowledge of the functioning of the AUT. Dumb
monkeys do things like mindlessly clicking on buttons to see what happens. Contrast with a smart
monkey.
Duration See session duration; test duration.
Duration or Endurance Test This type of testing places a load on the system for an extended period
of time, usually for a few days, with the purpose of detecting slow-to-appear defects such as memory
leaks or buffer overflows. Duration testing may also be used to measure the system availability, in terms
of the percentage of the time it is functioning, and reliability of the system, in terms of MTBF (mean time
between failure). People also call this type of testing long-sequence testing, burn-in testing and soak
testing. With the fast processing speeds and the parallel processing which are available today, more
testing can be done more rapidly, and extended test durations arguably have become less important.
Especially because an entire project may have to wait for days while the duration test runs, it is a good
idea to review the bug reports to see what new information, if any, the second hour’s worth of testing
adds beyond the first hour, the third hour beyond the second, and so on. In addition, the field of software
reliability engineering does not require inordinately long test times in order to evaluate system reliability.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.198

with which a system interfaces.
Environmental Test Any test that does not primarily concentrate on functional or feature correctness,
but instead concentrates on either: (1) How the development and maintenance process affects the testing
process (e.g., modifications vs. new development, software packages vs. custom-built solutions), and (2)
How the system will operate in its real-world environment (e.g., performance, usability, security controls,
compatibility across different configurations or platforms). This method considers the environment within
which the system is being used. For example, a system may be installed on a factory floor where there is
heavy vibration and industrial chemicals in the air. Another system may be used on a plane at an altitude
of 50,000 feet, where electromagnetic radiation can arbitrarily change bit settings in magnetic media.
Equivalence Class A set of input conditions or data values which produce the same result or an
equivalent result. If one test case within the equivalence class works correctly, it can be assumed the rest
will also work correctly, so that they do not all need to be tested. A portion of a component's input or
output domains for which the component's behavior is assumed to be the same from the component's
specification.
Equivalence partitioning. A testing method where input data values (or other items) are partitioned and
then grouped together into equivalence classes. A variation the domain/range test approach for cases
where an input can cause multiple internal behaviors. Divide each domain into partitions (a set of ranges,
within each of which the system behavior should be the same). Test one representative value within each
partition, and assume that its result correctly predicts the results for all other values in that same partition.
Equivalence. Commonality, similarity.
Equivalence Test A test which uses only a small sample of all possible test conditions, but ones which
are chosen intelligently so as to uncover almost as many defects as an exhaustive test would have
uncovered.
Error. Specific cause of a failure. A defect is also referred to as an error or colloquially as a bug. Most
defects lurk in products indefinitely and are ‘benign’ (i.e., are never exercised or never cause a noticeable
failure. Unacceptable behavior; a lack of conformance with what the users can reasonably expect.
Synonym: bug; defect: anomaly.
Error guessing. A test case identification technique where the approach is to blue-sky brainstorm about
where and how errors are likely to occur and develop corresponding test cases. Can be creative and
cannily focused when based on shrewd intuition, but may not lead to a reliable test coverage.
Error message. A message produced by a system to notify a user, operator or support person of a
problem encountered in system operation.
Error Processing Test Some products, especially in a client server environment, interact with other
applications, systems or other platforms (Client to middle tier to back-end or server) and during this
process the product may traverse through many different paths. This can be an exhaustive error-
processing test. It is recommended that in this case the tester should first concentrate on their assigned
application error processing first and then coordinate with other projects to ensure that the error
processing related to their respective areas is conducted. However, the test engineer should not just rely
on other projects to test errors that may relate to the assigned application when it is communicating with
other parts of the system. Also the test engineer should read the error messages returned and determine
if the error makes sense to the audience it is intended for. For example, error messages are different for
users versus system programmers.
Error Rate Measurement Let’s say that the response to a database query happens in 0.1 second, but
this response says: “Database not available”. Or that a Web service can handle 10,000 users
simultaneously, but 500 of these users receive error messages. Fast response time and high throughput
are irrelevant if the user can’t do his or her job. Since this type of testing counts the incidence of errors or
failures, the first thing we need is a catalog of errors. I’ll provide a list of the types of failure later, in the
section entitled “Modes of Failure”. If you glance ahead at that list, though, you will quickly see it is not

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.199

particularly suitable for our purpose here. The list contains items relevant to system and network
administrators, such as “race conditions: timing out of sync.”, “memory leaks”, “page locking”, and
“processor saturation”, but which are meaningless to the end users. In other words, we need a user-
centric list of errors. We need to distinguish between symptoms of failure and causes of failure. Here we
will be focusing almost exclusively on the symptoms, not the underlying causes, and only those
symptoms which and meaningful to the end users see. In addition, most of the items on the user error list
are not catastrophic errors (“dark screen”, “dead keyboard”), but niggly and momentary annoyances to
which the system administrators may be oblivious.
Error seeding. Deliberate insertion of errors to assess test effectiveness, based on which inserted errors
are found. See: bebugging, software fault injection.
Event partitioning. In event-driven testing, deliberately stabilize or freeze selected variables, and isolate
events from each other (e.g., by deliberately disconnecting selected input sensors), in order to provide a
simpler set of test cases. Event partitioning usually occurs prior to more complex tests of multiple
simultaneous events, if these occur in the system being tested.
Event-Driven Test (1) Testing event-driven processes, such as unpredictable sequences of interrupts
from input devices or sensors, or sequences of mouse clicks in a GUI environment. (2) A technique to
develop test cases based on events. In situations where events occur concurrently or in sequences that
cannot be easily predicted, test each event individually first. Then, test an appropriate sample of
representative sequences or simultaneous combinations of events.
Exception handling. A test case identification technique where the approach is to identify the error
messages and exception handling processes, together with the conditions which should trigger them.
Test each set of error conditions.
Executable. (1) Ready for operation. (2) Short-hand for a executable file.
Exhaustive test One which exercises every possible condition. Alternatively, a test of every possible input
and every possible set of initial conditions. Testing which covers all combinations of input values and
preconditions for an element of the software under test.
Exit criteria. Conditions which should be met prior to or when completing a specific activity.
Expected Peak The most likely value or height of the peak. In a situation where the peak can vary, e.g.,
based on the length of the time duration which is being observed, the expected value is the modal (most
frequently observed) value.
Exploratory Test This is a "learn as you go" technique with quick feedback loops, used where a
system is not well understood and not well documented, and where there is no time for extensive data
gathering. The idea is to perform an iterative, evolving series of short test cycles: test the system on an
exploratory basis, learn about the system through the testing, decide based on the test results where next
to focus the test effort, and then move on to the next iteration of testing. No extensive, formal test plan or
test cases are developed prior to starting the testing.
Exposure. Importance of a risk, calculated using the equation: [(Cost of Defect) multiplied by (Probability
of Defect being triggered when a condition is encountered) multiplied by Frequency of Execution of the
Condition)]
Extreme programming (XP). Software development methodology developed by Kent Beck and others. It
emphasizes strong unit testing, incremental development, evolving design and a light application of
controls and documentation.
Failure (1) Deviation of a system or component from specified or expected behavior. This definition
assumes that the functional specification in itself is adequate or the expectation of the system behavior is
reasonable. (2) Any incident with negative consequences, where a system or component deviates from
its expected behavior. Synonym: anomaly, incident, malfunction.
Failure modes and effects analysis (FMEA). A technique to develop test cases based on failure analysis.
Analyze the block diagram or similar schematic that shows the system design architecture or structure, to

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.200

identify likely points of failures (e.g., critical interfaces among components). Modify the design before the
start of coding to address these potential failure modes (e.g., add additional controls). Use the FMEA
results also as a source of test cases.
Familiarization testing. See exploratory testing.
Fault The underlying cause of a failure.
Fault-Based Test A technique for testing computer software using a test method and test data to
demonstrate the absence or existence of a set of pre-defined faults. For example, to demonstrate that the
software correctly handles a divide by zero fault, the test data would include zero.
Fault-Tolerant Test Tests the ability of a system to continue operating despite faults, though possibly
in degraded mode, despite the occurrence of faults. This is similar to error detection and recovery testing,
degraded mode testing and robustness testing.
Fault tree analysis. Fault tree analysis identifies the faults (hazards) that can occur in a system and uses
a cause-effect graph or a process flow model to trace back to the events and causes which trigger each
possible occurrence of the fault. It is similar to FMEA and hazard analysis.
FCS. First customer ship: it means either the release date and/or first released version of the product.
Feasibility study. Analysis of the business justification and technical feasibility of a project.
Feature. (1) A capability provided by a system to it users. (2) Unpleasant experience, as used
sarcastically in the statement: “It’s a feature”. From the adage "It's not a bug, it's a feature."
Feature Interaction / Interference Test This type of testing attempts to stress a system by having
features, processes or threats interfere with each other. Suppose that a system contains two features, A
and B. In the feature testing, we run a set of test cases to exercise feature A, and another set for feature
B. These features can interact and possibly interfere each other, for example, by both being able to
simultaneously access and update the same records in a common database. In this situation, the feature
testing usually includes feature interaction testing, but only to a limited degree and for the simplest cases.
For example, in a manual test two different testers, working from two workstations, attempt to update the
same database record at the same time. Usually the feature test team cannot easily try more complex
combinations of many concurrent activities. A load or stress test, by contrast, by its nature usually
incorporates multiple concurrent demands on the system we are testing. In the feature interaction
variation of a load test, we deliberately engineer the test work load to include “nasty”, complicated and
interacting mixes of demands.
Field test. A test which addresses these questions: Does the system perform adequately in a pilot, beta,
trial production or parallel environment? (Parts of these tests may be a customer or user responsibility.)
Pilot and field and beta testing are similar.
FIFO First in, first out. A way of managing a queue.
Filtering. Sorting through large volumes of information and presenting to the user those which are likely to
satisfy his or her information requirement.
Firmware test. The testing of firmware (low-level software that is usually embedded and pre-loaded into
ROM or read-only memory).
Fix. A modification to a system to resolve a problem.
FP. See function point.
Framework In automated testing, the infrastructure to support the testing tools.
Front-end. The front-end of a project includes all project activities that occur before the coding begins.
Function point. A measure of the software size, based on its functions and derived from the inputs,
outputs, data storage and complexity of that software.
Function. A capability of a system. See: feature.
Functional analysis. Analyzing the functions or features of a system to derive test cases for those
functions, and ensures each function of the system is adequately tested. Traditional functional testing is
not concerned with performance, usability or stress-related activities, such as running multiple functions

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.201

in parallel. This method is also called feature analysis and function-output-input (FOI) analysis.
Functional decomposition. (1) The development of a functional hierarchy for a software design. (2) The
work breakdown structure for a project. (3) A technique used during planning, analysis and design;
creates a functional hierarchy for the software.
Functional specification. A document that describes in detail the characteristics of the product with regard
to its intended features.
Functional test. See also black box test.
Functionality. The collected set of functions for a system.
Garbage Collection The collection and re-setting (cleansing) of memory fragments as they are freed
by de-allocation, ready to be allocated for the next use.
Gateway. See quality gateway
General-purpose computer. A computer which does not have a specific, dedicated purpose but can be
adapted by software for diverse purposes, for example, a personal computer. Contrast with an embedded
system.
Glass Box Testing. A synonym for White Box Testing.
Go/no-go decision. A project review point when the project manager, marketing or the customer decides
whether a project should proceed.
Good enough software. Software which meets the users’ needs and acceptance criteria, but is not tested
and debugged beyond that level.
Goodput Measured in bits-per-second, shows useful application data successfully processed by the
receiver. It measures effective or useful throughput and includes only application data—not packet,
protocol, or media headers.
Gorilla Testing. Testing one particular module or set of features, fairly heavily.
Grammar-based test. See BNF, syntax-driven test.
Gray box test. An intermediate level of testing, between white and black, where a sufficient design-level
view of the internal structure is available to test component interfaces and sub-assemblies. See
integration test
GUI test. Testing the front-end user interfaces to applications which use GUI (Graphic user interfaces.
GUI. Graphical user interface.
Guideline. Provides guidance without necessarily being a mandatory standard.
Hammer Test These tests have little or no resemblance to real-world distributions and user
communities. A typical test takes all the existing load generation scripts and methods, eliminates user
think times and increases load until failure occurs. These tests are designed to make the system fail.
Once failures occur, mitigation strategies can be determined. These tests are generally only executed
after several rounds of tuning. There are no pass/fail criteria for hammer tests as the intent is to find the
break points and develop risk mitigation strategies from those break points. See also hot spot test.
Hang. System freeze.
Hardware. The processors, memory and peripheral devices on which software runs.
Hardware component. A piece of hardware, such as a transistor or a router.
Hardware/software co-development. A development approach where the software is being developed
before the hardware is available, and vice versa.
Hazard or threat analysis. A technique to develop test cases based on identifying what could go wrong
with the system (the hazards or threats). Determine what the appropriate response should be to each
hazard or threat (the system's expected behavior). Use this analysis as the basis for test cases, to
validate that the system responds to hazards in an acceptable way.
Hazard or Threat Identification This method, which is similar to risk-based testing, considers the
dangers and obstructions associated with using a system.
Hazard. See risk.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.202

Heap. An area of memory which is used for dynamic memory allocation. See allocation.
Heartbeat Coordinating status message among servers, used in server fail-over.
Help desk. User support facility, similar to a technical support group but usually internal to an
organization.
Help test. See on-line help test.
High-level architecture. “Big picture” overview of the system structure.
High-level design. See high-level architecture.
High-level integration. Integration of large-scale or major components and subsystems; conceptual view
without detailed interface data formats and definitions.
High-level language. A programming language, such as C or Java, which is used by software engineers
to write software which is then transformed by a compiler into machine-readable code (also called object
code or executable files). HLLs are usually portable, i.e., processor-independent.
High-order test. Black-box test conducted once the software has been integrated.
Hit or Page Hit The retrieval of any item from a web site, such as a graphic file. Typically more than
one hit is required to retrieve an entire page.
HLL. See high-level language.
Home page. The primary point of access to a Web site, which provides links to the related pages in the
site.
Host. (1) The platform on which software operates, or the target platform on which it will operate. (2) A
mainframe computer.
Hot Spot Test This is a variation of stress testing, where the demand on the system is heavily focused
on a specific, limited portion of the system, in order to detect if it is a weak point. We employ it in areas
which we suspected are vulnerable to stress, for which, the weak links I the chain which are likely to
break first under load..
Hourly Users or Visitors The total number of individual users who have an open active session
during the span of an hour.
Hourly Visits or Sessions The total number of unique sessions during the span of an hour. Since
each user or visitor must have a minimum of one session, but could have more than one within the span
of an hour (by logging off and then on again), the hourly visits must be equal to or greater than the hourly
visitors.
HTML. HyperText Markup Language, a common way of inserting simple formatting instructions into a
web page.
HTTP. HyperText Transfer Protocol, a protocol widely used on the Internet.
HTTPS. HyperText Transfer Protocol, Secure. This is a variant of HTTP for secure transactions.
Hyperlink. Connector between Web pages or documents.
HyperText Markup Language. A set of standard tags and codes used to format hypertext documents.
HyperText Transfer Protocol. Protocol for the Internet, whereby a client and server communicate during a
hyperlink.
“Ilities” Non-functional requirements used to assess the quality of a system, such as usability or
reliability.
I/O device. A device (usually a hardware component) which interfaces between a processor, its
peripherals such as printers and the external environment.
I/O. Input/output: the interfaces between a system and the other related systems with which it interacts.
ICE. See in-circuit emulator.
IEEE. Institute of Electrical and Electronics Engineers.
IIT See initial impact assessment or infrastructure impact assessment.
Implementation. (1) The process of delivering a system. (2) The delivered system.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.203

In-circuit emulator. A tool which emulates a processor (CPU) for development, testing and debugging
purposes.
Increasing Work Load In a load test, an increasing work load is a type of work load used to find the
limit of a Web application's work capacity. Virtual users are added to the test load until the application is
stressed to the failure point.
Independent test group (ITG). A group of people whose primary responsibility is software testing,
Independent Verification and Validation (IV&V) A phased approach to testing, primarily used in
the military and by defense contractors, which combines both validation and verification.
Independent verification and validation (IV&V). A phased approach to testing, primarily used in the
military and by defense contractors, which combines both validation and verification. An example of these
terms follows. Validation: the contractor validates that the system meets specifications. This activity
happens at the contractor’s facilities. Verification: the client (usually military or government) verifies that
the system meets the client’s requirements. This second activity usually happens at the client’s facilities.
Information services. Common name for the internal roup with provides computer services to an
organization.
Information technology. Common name for the internal roup with provides computer services to an
organization. See information services.
Infrastructure Impact Assessment Assesses the impact of a change on an existing infrastructure
which is supporting a mix of work load demands. This testing focuses not so much on the immediate
application being changed, or the new application which is being introduced into the environment, or a
change in the demand patterns within one application, but on its side effects on the other uses of the
infrastructure. The issues are the capacity and the utilization of resources in that infrastructure. This is
also called an environmental assessment.
Initial Impact Assessment A quick, approximate form of an infrastructure impact assessment.
Input domain test. For each input, identify each domain over which the system behavior should be the
same. Test one representative value within this range, and assume that its pass/fail result correctly
predicts the results for all other values in the range.
Insider. Member of the inner core team which develops or maintains a system.
Inspection. A visual examination to detect errors, violations of development standards, and other
problems. A group review and quality improvement process for written material. It consists of two
aspects; product (the document itself) improvement and process improvement (both document production
and inspection).
Installability. Can the system be quickly and easily installed on a variety of platforms by a variety of
users? Is the migration or conversion from existing systems, databases and business processes well
understood and reliable?
Installability Test The successful installation and execution of the product across different software
and hardware configurations is an important part of testing the product. This type of test can be combined
with configuration and compatibility testing. Sometimes the product may have a set of installation
diskettes or installation procedures that require testing. The installation process should be documented in
the early stages of the development process and put into the configuration management plan. This will
make the install process easier for the implementation phase of the development process.
Installation. (1) The process of installing a system. (2) The installed system.
Installation Process Test This tests the system installation process, which is important to vendors
and to information services (IS) organizations who plan to install a system in many field sites. (This is not
the same as software package installation testing, which also typically includes a functionality check-out
and confirmation of a valid data conversion.)
Installation Test (1) Checks the system, network or database installation process. May be combined

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.204

with the conversion test on smaller projects. (2) A test which addresses this question: Does the system
installation process work correctly. Confirms that the application under test recovers from expected or
unexpected events without loss of data or functionality. Events can include shortage of disk space,
unexpected loss of communication, or power out conditions.
Instruction pointer. A register in the processor which contains the address of the next instruction to be
executed.
Instruction. A statement or directive or line of code.
Instrumentation. The insertion of features directly into a product to aid in testing and debugging, such as
diagnostic traces, defensive re-editing of passed-along inputs. May be temporary or permanent;
Integer. A whole number without fractions or digits after the decimal point, such as 0, 27, and -753.
Integration Test This system may interface with one or more other external products, or be a
component of a larger application. In this case, the product must be tested against the other interfaces it’s
communicating with or through. For instance, in a client server environment there may be
interdependencies between one product and another that communicates through some other interface
via the Internet. Also in a multi-tiered environment the test team must take into consideration the
interfaces between the client, middle tier and the back-end. Each piece of the n-tiered environment is
integrated separately, tested separately and then tested again when all of the different pieces are
integrated to make a complete operational system. (1) A test of a combination or sub-assembly of
selected components in an overall system. Integration testing usually is incremental, in that successively
larger and more complex combinations of components are tested in sequence, proceeding from the unit
level (0% integration) to eventually the full system test (100% integration). (2) A test which exercises a
combination or sub-assembly of selected components which eventually will be part of an overall system.
(3) The term integration test can also be used in a different way, to describe large-scale systems interface
or interoperability testing. In this use of the term, integration testing comes after the traditional systems
test. (4) Testing of combined parts of an application to determine if they work together correctly. Usually
is performed after unit testing. This type of testing is especially relevant to component-based and
distributed systems.
Interface Simulator In live operation, the SUT usually interfaces with other systems. These other systems
may not be present in the test lab, because of feasibility, availability and expense, or because the SUT is
deliberately being tested in isolation. The interface simulators replace and crudely mimic the behavior of
the other systems.
Interface test. Test an interface by passing parameters (data fields) across the interface, and checking
that the correct response occurs.
International Standards Organization. European-based standards setting group.
Internationalization test. Testing that national-market versions of a product work in their target markets
(e.g., in France or Japan). Also called a localization test.
Internationalization. The preparation of software and hardware for international markets, usually with
multilingual capabilities. See localization.
Internet Protocol (IP). The network layer for the TCP/IP protocol in the Internet. It provides packet
disassembly, routing, and re-assembly services.
Interoperability Test Identify the interfaces, data feeds and controls among components, subsystems
or complete systems. Use this as the basis for testing these interfaces. In different variations, this is also
called integration testing or system interface testing. Interoperability testing is only as effective as the
testers' ability to see and understand the interfaces. Also called a connectivity test.
Interoperability test. Identify the interfaces, data feeds and controls among components, subsystems or
complete systems. Use this as the basis for testing these interfaces. In different variations, this is also
called integration testing or system interface testing. Interoperability testing is only as effective as the
testers' ability to see and understand the interfaces. Also called a connectivity test.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.205

Interoperability. Does the system interface correctly with the other systems it is expected to work with?
Interoperability is the ability of a system to communicate, connect and or interface with other systems.
Interrupt service routine. The software component which is initiated when a particular interrupt occurs.
Interrupt (1) The temporary suspension of a running software process or task to give resources to
another higher-priority task. (2) A signal from a software component or a hardware device such as a
peripheral. When an interrupt occurs, the current state of the saved for future restoration of processing
after the interrupt has been taken care of, and an interrupt service routine (ISR) is executed. When the
interrupt service routine exits, control is returned to the software component which previously was
executing.
Inter-task communication. A mechanism used by tasks and interrupt service routines to share information
and synchronize their access to shared resources. The most common building blocks of intertask
communication are semaphores and mutexes.
Intranet. An internal, private network which provides services like the Internet but is not necessarily
connected to the public Internet.
Invasive test. A test in which the object being tested has been modified by the introduction of monitors,
internal probe points and sensors required for the test process. Software generally needs to be re-
compiled or re-built to incorporate these probes. Synonym: intrusive testing. See: instrumentation.
IP. See Internet Protocol.
IPL. Initial program load. See start-up code.
IS. Information services.
ISO. International Standards Organization.
Isolation Test An isolation test is a type of load test which focuses on a particular point in an
application by continually executing a specific set of transactions. Isolation tests help in pinpointing a
problem once one has been identified to exist in the application. An isolation test is a type of load test
used to focus in on a particular problem in a Web application. It is used once a number of load tests have
identified that a problem actually exists in the application. Isolation tests often execute specific sets of
transactions over and over again in order to precisely identify a problem. These tests can help in
pinpointing, for example, which set of requests caused a Web server to send back an error message or
caused a deadlock on the database server.i
ISR. See interrupt service routine.
ISTQB. International certification for software testers.
IT. Information technology.
Iteration. A single pass through a group of instructions. Most software contains loops of instructions that
are executed over and over again. The computer iterates through the loop, which means that it
repeatedly executes the loop.
Iterative development. Method of software development where the requirements and design are not
frozen but evolve as the coding is being done.
Iterative or spiral life cycle test. Testing in a environment where the specifications and product are
expected to continue to evolve indefinitely, and where there is never a frozen, final or documented
specification. Also called a RAD (rapid application development) test or a prototype test.
IV&V. Independent Verification and Validation.
JAD See joint application development.
JIT. See just-in-time software.
Joint application development (JAD). A technique for requirements definition and system design which
emphasizes user involvement in joint sessions with the technical developers.
JPEG. Joint Photographic Experts Group format: a standard for graphics files.
Just-in-time (JIT) software. Software developed, acquired or modified just as needed, in order to minimize
obsolescence.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.206

Kaizen. Continual process improvement.
Kernel. The core of a software architecture. In a multitasking operating system, for example, the kernel
contains the scheduler and context-switching algorithm.
KLOC. Thousands of lines of code.
Knowledge Management. The systematic management and use of the knowledge in an organization; the
leveraging of collective wisdom to increase responsiveness and innovation."
KPA. Key process area. See: CMM.
LAN. Local area network.
Latency A delay or the possibility of a delay; a wait state.
Level of confidence in data. The confidence ranges from low to high:

• Very Lo: there is a 50% or better chance that the real data value does not lie within 30% of the
measured or reported data value.

• Lo: there is a 50% or better chance that the real data lies within 15% of the measured or reported
data value.

• Mid: there is a 90% or better chance that the real data value lies within 15% of the measured or
reported data value.

• Hi: there is a 90% or better chance that the real data value lies within 5% of the measured or
reported data value.

• Very Hi: there is a 95% or better chance that the real data value lies within 5% of the measured
or reported data value.

Limit Test Identify the limits of the system, and test what happens when the system is pushed to and
beyond these limits. For example: a counter overflows (i.e., an attempt is made to increase its value
beyond the maximum possible value, based on its size). See also stress test.
Line of code. Source instruction or statement in a programming language. Also referred to as an LOC.
Linear Projection Involves collecting past data, extending or implying trends through the use of scatter
plots and regression lines, and comparing the trend line with the current capacity of the system. Although
linear projection is used quite frequently to make assumptions about future behavior, the performance of
computer systems is far from linear. Therefore, any linear relationship determined between two system
components should only be used to understand the current (or past) behavior. Linear projection is best
used when you want a first approximation to a very simple model.
Line-of-code metric. Measure of quality or productivity which is normalized based on the source code
(i.e., multiplied or divided by the number of lines of code).
Linker. A software tool which runs after the source code has been compiled, and transforms the object
files into relocatable software (i.e., software which can bed moved from location to location in memory
without loosing the linkages among the files).
Little’s Law xxx
Live Change Test There are many systems which must keep running, no matter what. One example is
an aircraft flying over the ocean. What happens when an emergency fix or routine maintenance must be
done without taking the system down? This type of testing assesses the ability to make live modifications
to the system without interrupting service.
Live Data Test Extract a sizeable volume (a copy) of existing live production data, modify it as needed
for the test, execute it and see what transpires.
Live data test. Extract a sizeable volume (a copy) of existing live production data, modify it as needed for
the test, execute it and see what transpires.
Live. Active, working, operational.
Load The load or the work load is the demand on a system. The term load simply means the mix of
demands placed on a system while we measure its performance and robustness characteristics. In

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.207

practice, most loads vary continually, so later we will address the challenge of determining the most
appropriate load(s) for testing. The terms work load and benchmark are sometimes used as synonyms
for load. A benchmark usually means a standard load, one used to compare the performance of systems,
system versions, or hardware environments, but the benchmark is not necessarily the actual mix of
demands at any one user installation. The term work load is a synonym for a load, and you see both of
the terms in this book: they are interchangeable.
Load Test Measuring a system’s performance and resource utilization under load (usually heavy load).
In contrast to a performance test, a load test is a measurement of performance under heavy load: the
peak conditions. Because loads can have various sizes, more precise terms for this type of testing are
peak-load testing or worst-case-load testing. A performance test may be run with a typical, representative
load, but this measurement may not tell us much about the system’s behavior under heavy load. For
example, let’s assume that the peak load on a system is only 15% more than the average load. The
system may degrade gracefully – the system runs 15% slower at peak load. Often, though, the
performance under load is non-linear: as the load increases by a moderate amount (in this case, 15%),
the response time does not increase by a comparable percentage but instead becomes infinite because
the system fails under the increased load. An imprecise shortcut to calculate the height of the peak load
to use in testing: multiply the average load by a fixed factor – 3 to 5 times more for client/server; 10 to 25
times more for web sites with sudden spikes.
Load Variation Test In this type of testing, the load varies during the performance measurement, to
reflect the typical pattern of how the load ebbs and flows over time. This provides a more realistic picture
of the system’s performance characteristics than testing with a steady load for a duration.
Local area network. A network within a small geographic area like an office building or a college campus.
Localization test. See internationalization test. This term refers to making software specifically designed
for a specific locality.
Locator. A software program which assigns physical addresses to the relocatable software produced by a
linker. The result is an executable file.
Log On / Off The user actions which initiate and terminate a session.
Logic analyzer. A hardware debugging tool which captures the hardware states and signals in real-time
systems, for diagnostic and debugging purposes.
Logic test. See path analysis.
Loop. In a loop structure, the software presents a choice or asks a question.If the answer requires an
action, it is performed and the original question is asked again until the answer is such that the action is
no longer required. For example, a program written to compute a company’s weekly payroll for each
individual employee will begin by computing the wages of one employee and continue performing that
action in a loop until there are no more employee wages to be computed, and only then will the program
move on to its next action. Each pass through the loop is called an iteration. Loops constitute one of the
most basic and powerful programming concepts.
Loop testing. Testing software or a process which contains feedback loops.
Loose-tight fit. The tight part means having strong core values to guide an organization. The loose part
means that, once these strong core values have been established, the organization allows project teams
considerable autonomy in carrying out their objectives.
Loss. An undesirable outcome.
Low-level design. The specification and design of the individual software components within the high-
level design architecture, including the interface (input and output) and data storage of the component,
and its expected behavior (algorithm). Also called detailed design.
Low-level integration. Connection of a string or hierarchy of atomic software components.
Maintainability Can the system easily be modified or fixed? What is the feasibility and ease of making

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.208

modifications? How rapidly and how safely can enhancements and repairs be made? Maintainability is
the degree to which software is robust, flexible and amenable to change.
Maintenance test. The procedure and issues in testing a maintenance change to an existing system.
Maintenance. The on-going activities to make modifications to software after it has been delivered to the
end users.
Make-or-buy decision. The decision whether to build software internally, acquire a package, contract for
its development, or adapt existing systems and re-usable components to form the software.
Manageability. Complex systems which operate in demanding environments need to be continually
managed, either semi-automatically of by specialized system administrators. These systems include Web
sites, operating systems, server clusters and networks. Manageability is the degree to which these
systems can be managed prudently and efficiently.
Manual Test Driver In most test projects, at least some portion of the test cases are executed manually.
The manual test driver is a keyboard, handset or some other test input device which can be used by a
person. If an embedded system normally has no human input device, one will need to be built by the
testers specifically for the manual testing.
Manufacturability. Can the product be manufactured? (Generally this not an issue with software.) The
manufacturing process is relatively straightforward for most software, e.g., simply making and packaging
copies of CD ROMs. For embedded products and integrated hardware/software products, though, the
feasibility of manufacturing the integrated hardware/software product is an important factor in the overall
system quality.
Maximum Throughput Calculation Based on the measurements from the test tool and from the
monitoring tools, you can calculate the maximum throughput that the system (used in the test) will
support. This is essential information that will be used in the capacity planning.
McCabe’s measure. The count of basis paths in a software module, also known as cyclomatic complexity.
Mean vs. Median and Mode A reminder of our high school math is helpful here B remember how you
went to sleep when the teacher was talking about the difference between average (mean) and median
values? For example, since most transactions vary in length, data about their lengths can be expressed
in terms of the mean, the median or the mode. We calculate the average by taking the combined lengths
of all the transactions in a category and dividing by the number of transactions in that category. The
median is the length of the transaction which lies midway between the longest and the shortest in the
same group of transactions. (The mode, which we have not been given in this exercise, is the length of
the most frequently occurring transaction.) If a set of data values follows a bell-shaped (Gaussian) curve
and is symmetrical around the median value, this means that the median, mode and mean are all the
same for that set of data. The range of the transaction lengths is usually not symmetrical around the
median or the modal length, but is skewed. For example, if a few search response transactions are much
longer than a median length of 2.4 kilobytes (KB) and are at the maximum upper limit of let’s say 256 MB
each, which is likely to be the case, then the average transaction length will be significantly more than the
median value. In this case, the average length could have a value like 4KB or 8KB.
Measurement Observed, quantitative data about software or about a software engineering process.
The gathering of quantitative data about software or about a software engineering process.
Measurement of Delays (Latency) To be able to measure response times for particular events, we
need to assume a straightforward cause-and-effect relationship: this stimulus triggers that outcome. In
this situation, we can easily identify the stimulus for each outcome, and we can measure the delay from
this particular stimulus to its particular outcome. If we cannot easily link the system outcomes to the
stimuli, though, we need a more elaborate measurement (and model) of system behavior than the end-to-
end response time. Consider a situation, for example, where the system logs and stores a stream of
events in a file, but takes no action until the accumulated number of events reaches a certain threshold.
We could reach this threshold within seconds or not for several weeks, depending on the work conditions.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.209

In this situation, we may be interested in three elapsed-time numbers: (1) from the first event to the
observable outcome, (2) from the very last event to the outcome, and (3) the average response time
(from the median event to the outcome).
Measurement of Losses In networks especially, losses are a way of life. In analog networks, signals
can attenuate (weaken) and their wave shapes become corrupted. In a congested switch, blocking may
cause a loss – all ports or connections into the switch are already busy, and the system simply drops an
incoming message when the input hopper (buffer) is already full. In packet-switched digital networks, a
data packet can be lost in transit. In the Internet, for example, a data packet is deliberately killed when the
number of hops which the packet takes from node to node (i.e., from router to router) exceeds a threshold
(usually 16 hops), in order to prevent them endlessly circulating within the Internet and royally gumming
up the works. Elaborate facilities have been designed into the Internet to take care of these packet
losses. Despite the fact that losses are considered routine, though, a high rate of loss is unattractive
(usually anything more than a few percent). Every lost packet in the Internet generates at least two more
messages, a request back to the point of origin to re-send the lost packet, and the re-sending of that
packet. Thus the rate of loss tends to have a major impact on performance, and a NASA study found that
a 3% loss of data packets in the Internet leads to a 50% degradation in throughput.
Measurement. (1) Observed, quantitative data about software or about a software engineering process.
(2) The gathering of quantitative data about software or about a software engineering process.
Memory. Information storage facility for a computer.
Memory Leak A bug caused by lack of sufficient memory (memory starvation), when an application
continually requests portions of memory from the operating system but does not releases them. See
allocation, de-allocation. A memory leak is the gradual loss of available computer memory when a
program (an application/process or part of the operating system) repeatedly fails to return memory that it
has obtained for temporary use. As a result, the available memory for that application or that part of the
operating system becomes exhausted and the program can no longer function. For a program that is
frequently opened or called or that runs continuously, even a very small memory leak can eventually
cause the program or the system to terminate. A memory leak is the result of a program bug. Some
operating systems provide memory leak detection so that a problem can be detected before an
application or the operating system crashes. Some program development tools also provide automatic
"housekeeping" for the developer. It is always the best programming practice to return memory and any
temporary file to the operating system after the program no longer needs it.ii
Methodology. Organized process, guideline or template for how to accomplish something.
Metric. A measurement or a standard of measurement. Software metrics are the statistics describing the
structure or content of a program. A metric should be a real objective measurement of something such as
number of bugs per lines of code.
Microprocessor. A computer processor on a silicon chip, such as Intel's Pentium.
Middleware. Software which provides the data translation and conversion among other pieces of
software, so that they link and communicate.
Milestone. A significant accomplishment, and the point in time when it is expected to occur or did occur.
MIS. (1) Management information system. (2) Management information systems group, sometimes called
IS (information services) or IT (information technology).
Modular design. A system design which has modularity
Modularity. The characteristic of a system which has been designed as a set of discrete but connected
components.
Module. A portion of a system. Also called a component or a software component.
Monitor (1) To observe behavior. (2) A visual display terminal. (3) A debugging tool.
Monitoring. Observing the behavior of a system, usually without interfering with it.
Monkey. Software which performs simple tests.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.210

Monkey test. A test that can be done without any knowledge about the internals of the system, let alone
understanding the requirements or the business domain. The term “monkey” may be perceived as
demeaning by the people who have to perform the tests, because it implies little skill or intelligence is
needed. The difference between monkey testing and random testing, is that a monkey test assumes no
information about the system, while a random test assumes that the randomness will mimic the actual
pattern of user behavior. Monkey testing can be performed manually or automated, with an automated
tool simulating a rapid succession of calls to the \component with random variations.
MTBF Mean (average) time between failures, a measure of reliability.
MTTF. Mean time to failure. See MTBF (which is not the same thing).
Multimedia test. Testing of systems such as Microsoft's Flight Simulator, which may include video,
graphics and sound, and all of which may be integrated with text and data.
Multi-processing. The use of multiple processors within a single coordinated system. A multi-processing
system usually as common memory through which the processors share data and communicate with
each other.
Multi-tasking. The concurrent execution of multiple software components. Each component (ands each
copy of as component) which is running is a separate task or thread of execution. The operating system
simulates parallel processing by dividing the processor's time among the running tasks.
Multi-threading. See multi-tasking.
Mutation analysis. Method of assessing the effectiveness of a test suite, by introducing small variations
(mutations) into the software being tested, to find whether the test suite is sensitive to (i.e., can detect)
the introduced changes.
Mutex. A flag used to by multiple concurrent tasks to signal mutual exclusion and coordinate their
activities. Also known as a semaphore. See semaphore, mutual exclusion.
Mutual exclusion. A guarantee of exclusive access to a shared resource on a temporary basis. Shared
resources in a system include a shared variable or a section of memory. The exclusion is signaled to
other tasks by setting a semaphore or mutex.
Nagling Automatic concatenation of several small buffer messages to increase the efficiency of a
network application system by decreasing the number of packets that must be sent. Named for its
creator, John Nagle, it relieves congestion in a TCP/IP network when an application generates data one
byte at a time, causing the network to be overloaded with packets.
Navigability test. (1) Testing the navigability of a GUI application or a Web site, i.e., checking whether the
visible linkages work. (2) In a graphic user interface (GUI) or windows environment, confirm the
navigation is correct, i.e., that when an icon, menu choice or button is clicked on, the desired response in
fact occurs.
Negative test. One where input data and the initial conditions are deliberately chosen which should not
be acceptable to the system being tested, or a necessary condition is violated during execution. A
negative test must result in an error message or an error recovery process, in order to be considered
successful. The testing is aimed at showing software does not work. Also known as "test to fail" or
destructive testing. See also Positive Testing.
Network. Interconnected set of computers or other communicating devices.
Network acceptance test. The purpose of these tests is to ensure that the data center and/or network
administrators can safely proceed with the installation process, without inadvertently affecting other
operations. Usually not performed by the users as part of their acceptance test, but performed in parallel
by data center operations and network professionals.
Network readiness criteria. See network acceptance test
NIH. Not invented here.
Non-Functional Requirements. The types of non-functional requirements include the basics such as
usability, security and performance, dependability, sustainability, fit with the environment, readiness to

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.211

implement, and operational concerns.
Non-invasive Test One which allows the object being tested to remain pristine (usually preferable to
invasive testing). However, non-invasive tests often cannot reveal as much as invasive ones, because
probes cannot be placed into the object being tested. Also called non-intrusive testing.
Non-invasive test. One which allows the object being tested to remain pristine (usually preferable to
invasive testing). However, non-invasive tests often cannot reveal as much as invasive ones, because
probes cannot be placed into the object being tested. Also called non-intrusive testing.
Number of Performance Measurement Cycles One of the major reasons for under-estimating the
time and resources needed for performance testing, and thus seriously compromising the test results, is
not allowing for sufficient iterations of the performance measurement. When a system is first delivered for
performance measurement, it is very unlikely to be optimally tuned and in fact is probably de-tuned. This
means that performance testing is not a one-time event. Based on the feedback from the performance
test, the system will be tuned and its performance will then be re-measured. Performance tuning is a
complicated activity, especially for complex systems. If the tuners change only one factor which affects
the performance of the system at a time, before the system’s performance is re-measured, we can
establish a clear cause-and-effect relationship between the changed factor and the resulting change in
the system performance. This approach to tuning is called OFAT (one factor at a time), and – while this is
a common approach – it does not work very well. Unfortunately, even a relatively simple system such as
a single cell phone usually has several factors which we can change to improve (or degrade)
performance. In small networks, the number of distinct factors which affect performance can easily
exceed one thousand, and in large networks the number becomes astronomical. This means, assuming a
limitless schedule and budget, the number of cycles of performance tuning and re-testing could be very
large indeed. In reality, deadline pressures and resource limitations temper the number of cycles. So how
many cycles of performance measurement can we plan for? First, accept the fact that one cycle is
unrealistic -- the performance is unlikely to be acceptable the first time around, and the system will need
to be tuned and re-measured at least one more time. As a rough guide, most performance test teams
plan for three to six iterations of performance testing in all. The number is usually higher in situations
where performance is critical or where the system resources are severely constrained (e.g., we expect a
low-power processor to handle an ambitious work load with hard real-time processing deadlines). In
these performance-critical situations, the number of iterations can reach 20 or more.
Object. A software component which includes a set of related data and a set of processes on that data.
Object code. Machine-readable and executable instructions, the output of a compiler or assembler.
Object file. A file containing object code. The output of a compiler or assembler.
Object-oriented system test. Testing systems designed and coded using an objected-oriented design
approach and development environment, such as Rational Rose, C++ or Smalltalk.
OFAT. One factor at a time. Refers to a performance tuning technique where only one adjustment factor
is calibrated at a time.
OLAP. On-line application processing.
One-time programmable. A device, such a PROM, which be programmed only once and cannot be re-
programmed.
On-line help test. Validating that the system's on-line help facility is accurate, complete and usable.
On-line test. The conversational, interactive nature of on-line testing means a different (interactive) test
approach is needed for on-line testing than for batch testing.
OO. See object-oriented.
Opcode. Operational code: a machine-level instruction which can be directly executed by a processor.
Open Problems Report Lists and tracks the open problems (bugs).
Open source software (OSS). Community-developed software, where the developers publish and
distribute the source code for free, and given permission for the source code to be enhanced by others.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.212

Operability Test Test that a system which works fine in a controlled, environmentally clean
environment, also works in the real world (e.g., on a dirty factory floor or high in the ionosphere)
Operability test. Testing that a system which works fine in a controlled, environmentally clean
environment, also works in the real world (e.g., on a dirty factory floor or high in the ionosphere)
Operating system & compiler test. The testing of support software, either by the vendor(s) or by
sophisticated clients.
Operating system. The software which interacts with the hardware and allows applications to run on that
hardware, such as Microsoft Windows and IBM’s MVS. Operating systems manage the resources, and
usually support capabilities like multi-tasking.
Operational. Pertaining to the live operation of a system.
Operational concerns. Requirements in this area address cost effectiveness, profitability, timeliness,
saleability, quality of service, service level agreements, documentation, and manageability
Operational Profile An operational profile (OP) is a list of the demands placed on a system, together
with frequency of occurrence for each one. Depending on the situation, the demands could be events,
transactions, messages, database accesses, etc. The operational profile of the test load should match
the profile expected in live operation.
Operational Profile Builder A tool that builds a statistical model of the relative frequency of utilization of
features, or the frequency of occurrence of events.
Operational profiling. Use of statistical techniques to develop a profile of the use of a system. Based on
their expected frequency of actual use, determine which paths, components, conditions or data tables
merit the effort of testing. If a path is expected to be taken extremely infrequently, for example, it may not
be worth the test effort.
Oracle. The decision-making mechanism or tool, device or procedure that evaluates the test results and
makes a pass/fail judgement. Usually does this by comparing the actual results of a test case with a
reference file containing the expected results. May also contains logic to independently compute the
approximate results expected from the test case.
Orthogonal array. Orthogonal arrays provide a subset of test cases to actually execute, from the set of all
possible test cases. The method determines the minimum subset of test cases, so that all combinations
of any two test factors are included in this subset of test cases. Telcordia’s AETG and Lucent’s OATS
(Orthogonal Array Test System), are software tools whicht generate orthogonal arrays and test cases
based on a description of the test factors.
OSS. Open source software.
Outage. Loss of service.
Outsider. A person who is not a member of the inner core team which develops or maintains a system.
Outsiders can bring a fresh, independent perspective to the validation of the system.
Outsource. Contracting of software-related work, such as testing, to an external third party.
Overflow. (1) In a queue or buffer, an attempt to add more records than can fit in the maximum allowed
capacity. (2) In a data filed, an attempt to write a value larger than the maximum number of characters
allowed for that field.
Package test. See software package test
Panic. An unstable state in which a system thrashes.
Paper prototype. A mock-up on paper of a system (e.g., story boards which describe the user interaction
with the system). See prototype.
Paradigm. A model.
Parallel Process Test A test in a parallel processing environment, also called multi-threading or
concurrent processing and not to be confused with traditional parallel processing. Usually requires
multiple processors that are simultaneously processing and interacting, or at the very least a multi-tasking
operating system. In this context, parallel processing means coordinated computing where multiple

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.213

interdependent processors are jointly working on the same problem. Parallel process testing is not the
same as parallel testing. Parallel process testing is not the same as parallel testing.
Parallel processing. The ability to use two or more processors on interdependent parts of the same
computation.
Parallel Test Parallel testing has two main forms: A before-and-after comparison, to assess the impact
of a change to an existing system. A side-by-side comparison, to help ensure that a replacement system
adequately replicates the behavior of the one being replaced. A full-fledged parallel test, which is unusual
because of the expense involved, includes duplicate manual data entry into the two systems. A full
parallel test can be very expensive, because to some people it deliberately includes dual data entry into
the parallel systems, and dual processing for a period of days or weeks. This dual effort requires up to
twice the operational and support staff during the time of parallel operation. Like volume testing, parallel
testing usually looks for features which fail under load, even if the system keeps running, through the
before-and-after comparison of outcomes. Parallel testing is also called comparability testing.
Pareto (80-20) Analysis A test focusing strategy. Analyze the defect patterns and identify their causes
and sources or likely sources, and rank them by frequency of occurrence and criticality based on the 80-
20 rule. Add test cases to check if the most likely or risky causes result in defects. Focuses the testing on
those locations or parts of the system where the prior incidence and cost of defects have been highest.
("Hunt for the bugs where the critters hang out.")
Parse. Scanning or reading an input string; for example, a compiler parses a source language instruction.
Path analysis. (1) A technique to develop test cases, based on the decision logic of a process or a piece
of software. The intent is to test each major decision option (i.e., each distinct path on the flow chart).
With variations on the theme, this technique is also called "branch coverage", "control-flow" and "logic
coverage" testing. (2) A method of identifying tests based on the flows or paths that can be taken through
a system. It is also called branch testing, because the branches through the code or functional logic are
identified and tested.
Path Testing. Testing which uses path analysis
Pattern. A model or template that can be used in making things.
PDA Personal digital assistant.
PDC (Primary Domain Controller) A server that maintains a read-write directory of user accounts and
security information. The PDC authenticates usernames and passwords when members log into the
network. Members only have to log into one domain to access all resources in the network.
PDL. Problem definition language. These usually combine natural language with programming language-
like constructions.
Peak The size or volume of the peak demand. Usually the relevant events are counted for an interval of
time (e.g., per hour or per millisecond), so the peak depends on the granularity or length of this interval –
more happens in an hour than a millisecond. In addition, the peak interval is the highest one of several,
so the peak also depends on the overall time duration (i.e., how many time intervals there are in the
duration). The peak hour in a typical week usually has a higher volume than the peak hour in a typical
day. By the same token, the peak hour in a typical month usually is higher than the peak hour in a typical
week, and so on. The longer the time period, the higher is the peak demand during that time period.
Peer review. In a peer review, a software work product is presented to the producer's colleagues to
identify defects.
Penetration Test Act an individual who is intending to infiltrate the security of an application. This
includes testing not only the application itself and it’s security features, but also those of the network,
hardware, and physical location where the product is running.
Percentile The nth percentile is a value so that n% of the data is smaller and (100-n)% of the data is
larger. Percentiles can be computed for ordinal, interval, or ratio data.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.214

Performance A system’s performance is its speed or responsiveness, its ability to handle loads and its
efficient use of resources. Depending on the situation, the term performance can mean response time,
throughput, availability, error rate, resource utilization, or another system characteristic (or group of
them), which we are interested in measuring. “All promise outruns performance.” Ralph Waldo Emerson.
Performance testing involves the testing of the product under stress, maximizing the load of the
application or volume testing and timing the ability of product to handle capacity or load over a specific
period of time. Any testing designed to understand the performance dynamics of the product. Products
sometimes have specific performance or efficiency objectives, stating such properties as response times
and throughput rates under certain work load and configuration conditions. If these requirements are
defined, then it is important to exercise these performance requirements as stated and beyond.
Performance Engineering Designing systems to meet performance requirements.
Performance / Load Test Driver These tools are used to drive performance and stress tests. The tools
"pump" a large volume of test cases through a system.
Performance Management Performance management is monitoring and troubleshooting on-going
performance in live operation.
Performance Measurement Tool Captures response times, throughput, system availability, and other
measures of SUT performance.
Performance Profiling Measures the performance in the system under test and determines the
contribution of individual components to the overall performance.
Performance Test The purpose of performance testing is to measure a system’s performance under
load: the testers are normally interested in both “how much?” and “how fast?” As Humpty Dumpty said, a
word can mean whatever one chooses it to mean, so it is worth our time to examine what we mean by the
words “measure”, “performance” and “load”. Performance testing is a measurement of performance
characteristics, although sometimes the use of the word “testing” confuses people. Some performance
professionals feel strongly that it is important to not use the term “performance testing”, but to call it
performance measurement instead. They are concerned that this measurement will get confused with
feature testing and debugging, which it is not. They point out that measurement is only testing if the
collected measurements are checked against pre-established goals for performance, and that
measurement is often done without preconceptions of required performance. These people have a good
point: clarity of terminology is important. But since most people use the term “performance testing” we will
go with the majority and use it too. Performance testing simulates the typical user experience under
normal working conditions. The load is a typical, representative mix of demands on the system. (And, of
course, there can be several different representative loads -- the work load at 2 p.m., at 2 a.m., etc.)
Another name sometimes used for a performance test is a capacity test, though there is a minor
difference in these terms as we will see later. First, the performance testers need to define what the term
performance means in a specific test situation -- that is, what the objectives are and what we need to
measure in the test. The answer to this question is that we measure performance usually as a weighted
mix of three characteristics of a system: throughput, response time and availability. In real-time systems,
for example, the users need a guarantee that a task will always be completed within a fixed time limit.
Performing a task correctly but a millisecond too late could literally be fatal.
Performance Test Plan A performance test plan tells the who, what, when, why, and how of the
testing effort. It lists specific tasks assigned to specific people to be completed by specific dates with
specific expected results.
Performance Test Strategy A high level approach to the testing effort that demonstrates how the
goals of the testing effort will be achieved by answering the question "What do we do when…?" without
the constricting details of a detailed test plan. Test Strategies are generally complimented with weekly or
bi-weekly “mini-plans” that detail the immediate next steps of the effort.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.215

Peripheral. A piece of hardware attached to the processor in a system, typically memory or an I/O device.
Pilot Test A field test at a limited number of sites, prior to widespread deployment or distribution of the
product. A pilot differs from a beta test, in that a beta is done by a vendor using prospective customers,
whereas a pilot is usually conducted in-house. Placing a new system in limited actual live use, at a small
number of field sites, prior to a full deployment of the product.
Pilot test. (1) A field test at a limited number of sites, prior to widespread deployment or distribution of the
product. A pilot differs from a beta test, in that a beta is done by a vendor using prospective customers,
whereas a pilot is usually conducted in-house. (2) Placing a new system in limited actual live use, at a
small number of field sites, prior to a full deployment of the product. See: beta test.
Plan. A scheme or strategy worked out beforehand for the accomplishment of an objective.
Platform Management Tool These tools perform configuration management on the test platform, load
new versions of the SUT, and provide diagnostics on the test platform.
Polling. A method of determining when software tasks or hardware devices need service from a
processor without using interrupts, by repeatedly reading a status indicator until the task is ready. Used in
situations such as the space shuttle where the uncertainty of interrupt timing delays cannot be tolerated.
Portability. The capability to migrate or transport software from one target environment to another.
Portal. Gateway, point of access.
Positive test case. One where input data and the initial conditions are deliberately chosen, which should
be acceptable to the system being tested. A positive test exercises a “normal”, mainstream use of the
system.
Positive Testing. Testing aimed at showing software works. Also known as "test to pass" or mainstream
test. See also Negative Testing.
Pre-emptive. The ability to temporarily suspension a running task when a higher-priority task needs
service. Generally requires a multi-tasking operating system or the ability to process interrupts.
Primary Domain Controller See PDC
Prior defect history. A test focusing strategy. Devise and add a test case for every defect found in prior
versions of the system or in other comparable systems, or at least for every defect above a certain level
of severity. This method is sometimes called fault-based testing, because it focuses on finding defects
based on the patterns of previous defects.
Priority inversion. A situation in which a high-priority task is delayed while waiting for access to a shared
resource which is tied up by a lower-priority task or is not even being used at the time. This undesirable
behavior happens occasionally in operating systems or other control software.
Priority. The relative importance of a pending task, such as a bug fix, compared to other similar tasks.

Problem. An issue which needs to be resolved.
Procedural design. Development of the procedural logic or algorithm for a software component or system.
Procedure. A documented step-y-step guideline on how to perform a task it in a reliable and consistent
way to obtain a specified outcome.
Process. (1) A systematic method for performing a work activity. See procedure. (2) A series of actions,
events or phases which takes place over time and has an identifiable purpose or result. (3) In a computer
system, a process has its own private memory space. By contrast, the tasks or threads in a system share
a common memory space.
Process description. A narrative explanation of how a process works, such as the logic of a software
component.
Process flow. A visual or narrative description of how a process works in a sequence of steps, and
showing the relationships among those steps.
Process tailoring. The activity of elaborating or adapting a process to a particular context.

Problem report. Written description of a failure, used to initiate the follow-up debugging and fixing
activities.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.216

Processor family. A group of related processors, such as the successive generations of Intel x86 chips.
Processor. The hardware which executes software instructions.
Processor-independent. Software which is independent of the processors on which it runs. This
independence is accomplished by a compiler, which translates processor-independent source code into
processor-specific object code, or by a virtual machine such as the Java virtual machine (JVM).
Processor-specific. A piece of software that localized to a specific processor and which not run on other
processors without major modification. Contrast with processor-independent.
Production Test A test which addresses these questions: Does the system operate correctly in on-
going production? Is the on-going monitoring and evaluation of the production results happening
adequately?
Production test. A test which addresses these questions: Does th system operate correctly in on-going
production? Is the on-going monitoring and evaluation of the production results happening adequately?
Productivity. Work accomplished per unit of time.
Profiler. A software tool which builds a profile of how software is used, e.g., which paths through a
software component are taken and how frequently, which other components are called and the total
amount of time spent in each one, etc.
Profitability. Cost effectiveness is important for a vendor to be competitive, but not if the firm is losing
money on each sale.
Project. An organized effort to accomplish a goal. Synonym: venture.
Project control. The control of budget, schedule, risk, quality, scope and change on a project.
Project plan. A description of the technical and management approach to be followed on a project. The
plan typically describes the work to be done, the resources required, the methods to be used, the
procedures to be followed, the schedules to be met, and the way that the project will be organized.
Project risk. A significant chance of a loss associated with a particular project.
Project tracking. Monitoring the activity and determining the status of a project.
PROM. Programmable read-only memory. A type of ROM which can be written (programmed) with a
device programmer. Also called write-once or one-time programmable (OPI) devices.
Prototype. A working model or a mock-up of a system, used to refine the requirements and design, and to
perform early usability testing. Usually emphasizes the look-and-feel of the system but does not contain
all its internal logic or controls. Prototype / Simulator tools also can be Astand-ins@ for the SUT. They are
used to check out the test environment, and to begin testing, before the SUT itself is available for testing.
Prototype Test Building prototypes for proof-of-concept testing, and also testing prototype systems if
and when they are ramped-up to become fully operational production systems.
Prototyping. The process of developing and evolving prototypes, usually in close conjunction with the
users or their surrogates.
Provably correct software. Software which can be proven to be correct through a mathematical theorem.
Proxy server A server that sits between a client application, such as a Web browser, and a real server. It
intercepts all requests to the real server to see if it can fulfill the requests itself. If not, it forwards the
request to the real server. Proxy servers can dramatically improve performance for groups of users. This
is because it saves the results of all requests for a certain amount of time. Proxy servers can also be
used to filter requests. For example, a company might use a proxy server to prevent its employees from
accessing a specific set of Web sites.
Quality. User satisfaction: a system has quality when it functions as the client or user can reasonably
expect.
QA. Quality assurance.
QC. Quality control.
Quality assurance (QA). (1) Independently verifying the quality of a system. (2) Quality activities which
are work process oriented. (3) All those planned or systematic actions necessary to provide adequate

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.217

confidence that a product or service is of the type and quality needed and expected by the customer.
Quality audit. A systematic and independent examination to determine whether quality activities and
related results comply with planned arrangements and whether these arrangements are implemented
effectively and are suitable to achieve objectives.
Quality circle. A group of individuals with related interests that meet at regular intervals to consider
problems or other matters related to the quality of outputs of a process and to the correction of problems
or to the improvement of quality. Quality circles are periodic, organized brain-storming sessions where
the members of a work team mutually examine their practices and develop improvements.
Quality control (QC). (1) The work done by insiders to build quality in and to test a system. (2) Quality
activities which are work product oriented. (3) The operational techniques and the activities used to fulfill
and verify requirements of quality.
Quality gateway. A checkpoint where the quality of a deliverable is assessed, usually by using a standard
checklist or procedure.
Quality management. The overall management of the quality function the quality policy.
Quality Metric A measure of quality.
Quality of maintenance. (1) Likelihood that enhancements and fixes work correctly. (2) Introduction of
inadvertent new defects. (3) Timeliness of maintenance.
Quality of service. QoS is often negotiated between providers of services and their customers, such as a
telecommunications carrier and a nationwide bank. Financial penalties are incurred if the QoS is not met.
QoS is a single combined measure, or a small number of measures, which includes elements such as
response time, ability to handle volume, availability, error rates and recovery time, for different types of
data and different types of user. QoS measures tend to be industry-wide benchmarks, a way of
measuring and comparing quality as a number or set of numbers. SLAs by contrasted are usually
individually negotiated between a particular client and supplier.
Quality policy. The overall intentions and direction of an organization as regards quality as formally
expressed by top management.
Quality system. The organizational structure, responsibilities, procedures, processes, and resources for
implementing quality management.
Race Condition A situation where related events do not occur in the required sequence needed to
produce the desired outcome, i.e., the outcome is affected by the exact order in which the instructions are
executed. Race conditions cause concurrency problems, e.g., multiple accesses to a shared resource, at
least one of which is a write, with no mechanism used by either to moderate simultaneous access.
RAD. Rapid application development.
RAID Redundant array of inexpensive disks, a method of organizing disk drives to improve database
performance and reliability.
RAM. Random-access memory, where individual memory locations can be accessed, read or written as
needed.
Ramp test. Continuously raising an input signal until the system breaks down.
Ramp-Up Test The term “ramp-up” is used in two ways. In the first use, it measures the time need to
initiate a process. For example, let’s say that a system contains an automated file back-up process which
is triggered under certain circumstances, such as when the file size reaches 90% of the available storage
capacity. Let’s also assume that the system requirements state that the back-up process must launch
within ten seconds of the file size reaching the 90% capacity. We’d use a ramp-up test to confirm that this
process launch happened as expected and that the system meets the timing requirement. The second
way the term ramp-up test is used is similar to a breakpoint test, in that we observe the trends in
response time, resource utilization, etc., as the load increases (i.e., ramps up), although we do not
necessarily increase the load to the point where the system fails.
Ramp-Up / Ramp-Down Time Ramp-up is simply the time between when the first user accesses your

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.218

application and when the target load of your test is reached. Since we are interested in the performance
of the system only during the time between the start and end points, no performance data from outside of
that time will be collected and since a user obviously can’t start in the middle of their activity on the site,
all of the green users need to be included. The ramp-up time becomes the time between the beginning of
the first user activity and the start of the model, and the ramp-down time becomes the time between the
end of the model and when the last user completes their activity.
Random generation of input data. Using a test data generation tool, generate a sizeable volume of input
data. This data is simulated, not live data. The tool can generate data to fit desired profiles, for example,
to reflect the demographic mix of actual live data. If a tool is not available or only a small volume of test
data is needed, have people bang away on the keyboard in quasi-random patterns.
Randomization The process of randomly varying test data, e.g., selecting the names of people for a
series of queries.
Range test. For each output, identify each domain over which the system behavior should be the same.
Test one representative value within this range, and assume that its pass/fail result correctly predicts the
results for all other values in the range.
Rapid application development (RAD). System development style which is intended to speed delivery.
Rate monotonic analysis. Method for calculating the upper limit on latency based on a system’s design

(the execution path with the longest duration).
Real-time operating system. An operating system designed for use in real-time systems. Usually RTOS
are stripped down to run very fast and add minimal overhead to the work being processed.
Real-time system test. Testing that a real-time system works, i.e., a system where timing issues are
critical and where a guaranteed response time is needed (for example, a system that automatically flies
an airplane).
Real-time. An action which must be completed within a hard deadline, a deadline that must be
guaranteed to be met in live operation.
Recoverability. If the system does crash, are the re-start and recovery mechanisms efficient and reliable?
If the system does produce errors, are there mechanisms to help detect and recover from these errors,
and minimize their impact? Recovery testing confirms that the system recovers from expected or
unexpected events without loss of data or functionality. Events can include shortage of disk space,
unexpected loss of communication, or power out conditions.
Recovery Test This type of testing takes into consideration what will happen if there is a crash or other
problem with the product. Can the system or product recover. Are there back-up procedures in place and
do they work. Some of the problems can be a hardware failure, memory parity errors, I/O device errors or
data errors. For example, unplug the Ethernet cable in the middle of an operation to determine how well
the application will respond, and what state the data will be in as a result.
Recursive. The characteristic of a software component which allows to call itself without interference. The
different calling and called versions of the component usually communicate through a stack.
Re-engineering. The re-furbishing of a legacy system with poor maintainability into maintainable software.
Re-entrant. The characteristic of a software component which allows it to be executed multiple times
simultaneously without interference.
Refactoring. Selective re-writing of code to improve its flexibility and maintainability.
Referential Integrity (RI) Data consistency; third normal form. RI is a feature of many DBMS which
check that different storage locations do not contain conflicting data. Some DBMS do not provide the
same level of RI across a distributed database as when the entire database resides on a single server.
Other DBMS provide this feature, but because of performance consequences, it is not enabled by the
DBA.
Register. A specialized, dedicated memory location which is reserved for use by a processor or an I/O
device.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.219

Regression Test A re-test of a system, subsystem or component, after a modification has been made,
to ensure that faults have not been introduced or uncovered as a result of the changes.
Release candidate. A pre-release version, which contains the desired functionality of the final version, but
which needs to be tested for bugs (which ideally should be removed before the final version is released).
Release Test A comprehensive test of the new version or upgrade of a system, prior to the release of
that new version.
Release. A version of a system that has been or will be migrated (released) to live operation.
Reliability. The likelihood that a system will execute for a period of time without error.
Reliability Percentage Given that we make statements about a system that has a planned availability
of 24 hours a day 365 days a year, the following applies: 99% reliability means the system s down
approximately 3 days and 5 hours per day, while 99.999% (“five nines”) means approximately 5 minutes.
Reliability Test Assessing whether a system meets (or will meet) its reliability goals, as measured by
availability, mean time between failure (MTBF) and mean time to repair (MTTR).
Relocatable. Software containing instructions which have relative, not fixed addresses, so that the
execution of the software is not dependent on the particular memory location into which it is loaded.
Remote Procedure Call (RPC) A communication model where requests are made by function calls to
distributed procedures elsewhere. The location of the procedures is transparent to the calling application.
RPC is a protocol that one program can use to request a service from a program located in another
computer in a network without having to understand network details. (A procedure call is also sometimes
known as a function call or a subroutine call.) RPC uses the client/server model. The requesting program
is a client and the service-providing program is the server. Like a regular or local procedure call, an RPC
is a synchronous operation requiring the requesting program to be suspended until the results of the
remote procedure are returned. However, the use of lightweight processes or threads that share the
same address space allows multiple RPCs to be performed concurrently. When program statements that
use RPC are compiled into an executable program, a stub is included in the compiled code that acts as
the representative of the remote procedure code. When the program is run and the procedure call is
issued, the stub receives the request and forwards it to a client runtime program in the local computer.
The client runtime program has the knowledge of how to address the remote computer and server
application and sends the message across the network that requests the remote procedure. Similarly, the
server includes a runtime program and stub that interface with the remote procedure itself. Results are
returned the same way.
Rendezvous Test This is a type of spike testing where many events “rendezvous” (i.e., happen
simultaneously). For example, we can use a software tool to simulate a hundred users hitting the enter
keys on a hundred keyboards at exactly the same time. Rendezvous tests are often unrealistic, because
a hundred users are unlikely to hit their enter keys simultaneously. If we allow a small spread of events
across time, instead of requiring an instantaneous happening, then the rendezvous test becomes much
more realistic -- for example, what happens if a hundred users all hit their enter keys within a duration of
two seconds?
Repository. See database.
Requirement. The description of an expected behavior of a system. Synonyms: Specification, functional
specification, system requirement, user requirement.
Requirements analysis. The process of understanding the users’ needs for a system, developing models
of the system’s behavior, and defining the requirements.
Requirements engineering. Requirements analysis, management and validation. Requirements in this
area include functionality, testability, debuggability, installability, scalability, upgradeability and
manufacturability
Requirements Manager These tools enable business analysts, system engineers, marketers and users to

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.220

compile, catalog and maintain lists of requirements.
Requirements management. The process of managing a repository of requirements, including versions of
the requirements for different versions of the system, change approval and provision of audit trails of the
changes to the requirements. Usually done with software tools which are called requirements managers.
Requirements validation. The process of reviewing, correcting if necessary and approving the system
requirements.
Re-set address. The memory address from which the first instruction is read after a processor is powered
on or re-set.
Re-set. The process of returning a system to a known pristine state ready for further use, or of re-starting
or re-booting the system.

Resource. (1) Anything which is needed to accomplish a task or a project, including people, software
tools, hardware and networks, documentation, etc. (2) Anything which is needed to run a computer
system, such as a hard drive.
Resource Utilization Monitoring the levels of utilization of system resources provides insights into how
the system works (which may not be the same as how its designers think it works). It helps to identify
bottlenecks, assess spare capacity and the potential for scalability, and how to improve the efficiency of
the system. The resources and events which are monitored can include processor activity, use of cache
memory and hard disk accesses, I/O traffic, page swaps, lengths of queues, overflows, number of ports
which are busy, network bandwidth utilization, and number of concurrent software threads or processes
which are running. Monitoring the resource utilization means we need access to the system logs which
are recorded by the operating system, network management system, and database management system.
Plus – and this is an important plus – we need to know how to read these logs. Often the numbers of
entries in these logs are so voluminous that it’s a good idea to use software tools to edit, extract and
summarize the meaningful information. Although they are voluminous, these logs generally do not
provide everything we need. In addition, we may need home-built or third-party plug-in tools to place
probes into the system under test and gather the data, hopefully without materially changing the system’s
performance and robustness characteristics.
Response Time Test This testing measures how long the system takes to complete a task or group of
tasks. It usually represents the user viewpoint, i.e., we measure the likely delay as perceived by an
external user. We also can measure the efficiency of an internal software activity or hardware component
which is not directly accessible by the user. Response time is the total end-to-end elapsed time, which
includes wait time in a queue prior to processing, and service time (the actual time to process the request
for service). Wait time and processing time both can vary, and may be affected by different factors.
Response Time vs. Throughput We generally need to measure both response time and throughput,
because one does not necessarily predict the other. It is possible for a system to have fast responses
with low throughput, or vice versa, slow responses with high throughput. There is not any iron law
governing the trade-off of response time and throughput – it is not a zero-sum game. We usually are
interested in achieving fast responses with high throughput. Part of the confusion between response time
and throughput is caused by mis-using the word "fast". A Boeing 747 is not three times faster than a
Boeing 737. They both cruise at a speed of around 500 miles per hour. The difference is in capacity -- the
747 carries about 500 passengers, whereas the 737 only carries about 150. Throughput depends on
capacity (e.g., bandwidth) as well as transmission speed. The Boeing 747 is three times larger than the
Boeing 737, but not any faster. If we want to go from New York to London, the Boeing 747 is not going to
get us there three times faster than the 737. The end-to-end “response time” for any one traveler on the
New York -- London flight is the same. On the other hand, if we had to transport 1,500 people to London
and we could use only one airplane, the 747 could do it in three trips while the 737 would take ten,
because the capacity and thus the effective throughput of the 747 is higher. Speed, capacity and

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.221

throughput may not be simple trade-offs. Suppose, for example, that an end user wants to transfer very
large files more quickly. While the user wants to speed things up, the transfer is not urgent. A high-
capacity, relatively slow communication link might appear to be the best thing for the job, if the file bulk is
huge but the transfer is not highly time-sensitive. What the end user does not see is that, in order to make
the file transfer, his or her computer has to send dozens of little control messages back and forth. In this
situation, both the response times for the many small messages and the throughput for large files are
important in fulfilling the user’s need. We usually measure response time and throughput at different
locations within a system, and may require different measurement tools for response time vs. throughput.
With a web site, for example, one visitor to the site will know his or her own response time but may have
no idea of what the total number of visitors and the total throughput are. By contrast, a measurement of
throughput at the central Web server will give no direct indication of the response time at each visitor’s
remote workstation.
Re-start. Initializing and starting a system after a planned outage or unplanned crash, hang or panic.
Results of Performance Test Most often we see results that meet or exceed the required levels of
scalability. Knowing the actual break point eliminates the tendency to persistently over-engineer Take
appropriate action to avoid the break point More efficient and better growth decisions are made by
understanding the current system limitations.
Re-usability. The ability of a software component, test case or other item be adapted for new uses, so
that new components do not need to be built.
Re-usable component. A component which is designed and built to be re-usable. The component may be
a software module, test case, section of documentation or other item.
Reverse engineering: (1) Recovering the design or the requirements from the software code. (2) Building
a comparable system based on its external behavior and without access to the internal design, to avoid
legal infringement.
Review. An inspection or examination with the intention of evaluation.
RISC. Reduced instruction set computer. A processor design which gains speed by having a limited set
of instructions. Contrast with CISC.
Risk anticipation. The act of identifying risks sufficiently early that reasonable corrective actions are
possible.
Risk assessment. The act of determining the likely outcomes associated with a risk or a set of risks, and
evaluating their likely probabilities and their likely costs.
Risk containment. The act of minimizing and controlling a risk factor after it has been identified and
assessed.
Risk management. The process of eliminating or minimizing the potential negative consequences of risk,
i.e., to improve the likelihood that all the remaining consequences of events are acceptable.
Risk monitoring. The continuous process of watching and re-assessing risk. Since conditions change, on-
going monitoring is an important part of risk management.
Risk quantification. A risk assessment technique which depends on quantifying the probabilities and
costs of outcomes.
Risk A significant chance of a loss. Synonyms: threat, vulnerability, weakness, hazard, exposure.
Risk-based prioritization. A test focusing strategy. Identify the major risk factors that could occur during
the system operation, and the conditions that will cause them. Test each of the related conditions and
verify that the risks are averted or managed successfully.
Risk-Based Test An approach where tests are identified and prioritized by risk, vulnerability or
exposure. This method uses a risk assessment to identify and prioritize the likely risks which the system
faces in live operation. We use this risk assessment to allocate test resources to the various aspects of
the system, i.e., to focus the test effort to the areas which need the depth and intensity.
Risk-based testing. An approach where tests are identified and prioritized by risk or exposure.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.222

Risky event. A significant event which is associated with a particular risk. A risky event either (a) provides
an early warning that the undesired outcome is going to materialize, or (b) causes the undesired outcome
to materialize, or (c) is the realization and confirmation of that risk, i.e., the undesired outcome actually
occurs. Synonym: risky incident.
Robustness Ability of a system to “take a licking and keep on ticking” because of overload, equipment
malfunction, inadvertent operator error such as invalid input, malicious act, natural disaster, etc. If the
system does fail, robustness includes the recoverability. May be measured or predicted in reliability terms
of MBTF and MTTR. Also called dependability, survivability.
Robustness Test Checking whether a system adequately prevents, detects and recovers from
operational problems such as downed network connections, data bases which become unavailable,
equipment failures and operator errors. Also called rainy day testing as opposed to sunny day testing.
Robustness test. Checking whether a system adequately prevents, detects and recovers from operational
problems such as downed network connections, data bases which become unavailable, equipment
failures and operator errors.
Robustness. Are automatic error detection and recovery mechanisms built in, to try to keep the system
operating no-matter-what? Is the system structured in order to minimize the possibility of introducing new
errors through bad fixes?
ROM. Read-only memory. Memory which can be be read but not written.
Roman arches method. Testing methods are not always a matter of mechanical techniques: human
behavior also has a role. The ancient Romans supposedly built and tested arches using the following
method. First, the arches were built using temporary timber scaffolding to hold the heavy stones in place,
until the keystone at the top center could be inserted. The scaffolding was then removed to leave the
finished arch. The arch was tested by requiring the builder to stand directly under the keystone as the
scaffolding was removed. In the case of an unsound design or construction, the arch could fall and maim
or kill the builder. If the builder moved from under the arch before all scaffolding had been removed, he
was automatically sent to gladiator training for the follow-up assignment of feeding the lions in the
coliseum.
Round Trip Time (RTT) RTT, expressed in milliseconds, is the elapsed time for a request to go from
node `A' to node `B', and for the reply from `B' to return to `A.' The RTT is the total time for the trip. The
forward and reverse path times do not need to be the same. RTT depends on the network infrastructure
in place, the distance between nodes, network conditions, and packet size. Packet size, congestion, and
payload compressibility have a significant impact on RTT for slower links. Other factors can affect RTT,
including forward error correction and data compression, which introduce buffers and queues that
increase RTT.
RTOS. See real-time operating system.
Safety test Testing intended to show that a system’s safety controls work and that the system cannot do
anything dangerous.
Safety-critical system test. Testing that life-critical systems are trustworthy. See safety.
Saleability. The marketer says cynically: “We don’t care how technically ingenious it is. Can we sell this
product?” This is an important issue for market-driven software vendors (and all vendors ultimately are
market-driven). Saleability is usually defined as a mix of some of the prior dimensions, such as: provision
of features which users like and want to use, ability to attract buyers, ability to fill a niche which is not
already dominated by entrenched competitors, and time to market.
Sample Size Most factors which we want to measure, such as response time, vary based on many
factors – both known and unknown. This means we cannot measure something once but must sample it
several times in order to compute a meaningful average. Performance testing is not complete until there
is a sufficient quantity of trustworthy information to answer the clients’ questions about the system
performance. How big does the sample need to be? According to statistical theory, we need a minimum

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.223

sample of 30 measurements for each type of demand on the system, in order to derive reliable
conclusions about average response time, etc. In areas where we expect a high variability in performance
measurements, such as the Internet, the minimum sample size for the major transactions could be 100 or
more..
Sampling A way to minimize the testing effort, by allowing us to draw conclusions about large
populations from the results of testing only a relatively small portion of the total population.
Sampling. A way to minimize the testing effort, by allowing us to draw conclusions about large
populations from the results of testing only a relatively small portion of the total population.
Sanity check. A last-minute, informal double check, after testing, debugging and fixing, to make sure
everything looks OK prior to system delivery.
Sanity test. Brief test of major functional elements of a piece of software to determine if its basically
operational. See also smoke test.
Scalability Test Checking that a system can work effectively with both small and large numbers of
users, small or large databases, typical or heavy load, etc. This type of testing investigates a system’s
ability to grow. Growth can occur in several ways, which we may need to separately test: increase in the
total load; increase in the number of concurrent users; increase in the size of a database; increase in the
number of devices connected to a network, and so on. We can test systems for their ability to scale down
as well as up. For example, we may be interested in this question: can the software run adequately on a
cheaper, slower processor or with less memory?
Scalability test. Checking that a system can work effectively with both small and large numbers of users,
small or large databases, typical or heavy load, etc. Scalability testing focuses on ensuring the application
under test gracefully handles increases in work load.
Scalability Can the system work effectively for one user, ten users or a thousand users?
SCCB. Software configuration control board, the group who makes decisions about changes and new
releases.
Scenario-Based Work Load A scenario-based work load is the most complex work load type. The
objective is to replicate real-world conditions by varying the number of virtual users run during a load test,
depending on the time of the day. This work load type is used for stability tests that run for extended
periods of time - 24 hours, a few days, or even a week.
Schedule. The sequence of tasks or activities, the time line and milestones for the work on a project.
Scheduler. The part of an operating system which determines decides which task to run next, based on
the readiness of the tasks and their relative priorities.
SCM. Software configuration management.
Scope. A statement of specifically what is included and what is not included in a project, such as a testing
project, or in a system.
SDD. (1) Software design and development. (2) Software development documentation.
Security controls test. Testing the internal application controls, system access controls, and back-up,
integrity and reliability features. Security testing confirms that the system can restrict access to authorized
personnel and that the authorized personnel can access the functions available to their security level.
Security Test Security testing is the process of attempting to devise test cases that subvert system
security checks. Security testing is a very important aspect of testing, especially when it involves financial
transactions or personal data (such as SSN).
Security. Assurance that a system, network or database cannot be accessed or used without the
appropriate authorization.
Semaphore. A data structure that is used for coordination of concurrently running tasks. See mutex.
Service level agreement. Agreement between the provider of services and the user, typically addressing
performance, reliability, allowable error rates, cost effectiveness and support. (SLAs) are operational
support goals which are documented as agreements among internal IS departments and their clients, or

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.224

between service provider vendors and their clients. These agreements define service objectives and
specify the agreed-on levels of service to be provided, based on the balance between (a) the resources
and activities under the control of the provider and (b) the needs of the client.
Session The series of individual events or activities (usually the externally visible interactions between
one user and the system), which occur from the time when the user logs on to the system until the same
user logs off.
Session Duration Same as session length.
Session Length The total amount of time that a single user is using web site during a single visit to that
site (expressed in minutes fractions of an hour). Hourly users divided by average session duration results
in a heavily averaged estimated of concurrent usage.
Severity level. The importance of a failure or defect. The severity level is often used to set the priority for
follow-up debugging and fixing.
Side effect. A new error which is introduced, or an old error which is exposed, by a change.
Simulation Simulation strives to mimic the production use of the systems as closely as possible by
creating a performance model that contains all the ingredients that make up "normal" usage. By running
this model under different load scenarios you can measure and assess the results. Simulation is the first
technique available for applications that are newly developed. This technique is typically the first one
deployed in a Performance evaluation exercise. It will generate the first set of results on the performance
of a system, results that can be used with the other, here mentioned, techniques. Simulation is the
process of using a computer program to model the actions of a user or system. In a load test the real user
of a computer program is simulated, or modeled, by creating a virtual user, which then emulates the
interactions of a real user with the system or program during the test.
Simulation Test Testing simulation models of real-world situations, such as a forecast of the financial
markets or the weather. The term simulation test is also used to mean testing a simulation of a system
before the system itself is ready for testing, in order to check out the testing facilities.
Simulator. A system which mimics another system, for prediction, development testing or debugging.
Simultaneous Users The start of execution/invocation of a particular sub-system/task/feature of the
SUT by a pre-specified number of users (the work load) within the same brief time window (1-3 seconds)
is termed as simultaneous usage of the system. This is usually accomplished by employing timing and
synchronization features in work load generation tools - e.g. rendezvous points in LoadRunner enable
one to synchronize users in a scenario for simultaneous usage. Caveat Emptor: Simultaneous usage may
not always be reflective of actual usage and is to be used sparingly.
Six sigma quality. A very high standard for manufacturing quality, based on an allowable level of failure of
3 parts per million.
SLOC. Source lines of code.
Smart monkey. Automated test tool which has some knowledge of the functioning of the AUT.
Smoke test. A “quick and dirty” initial test, to make sure the system can operate and process at least a
minimal workload. The term “smoke test” comes from the saying by hardware developers: “Power it up
and see if any smoke comes out.” In complex systems where the build or integration process is not
straightforward, a smoke test is a quick post-build test to ensure that all the components have
successfully been integrated together. Its purpose is to provide assurance of the build process before
proceeding to more comprehensive functional, performance or stress tests. A smoke test is also referred
to as a build verification test or a sanity test.
Smoke Test: A “quick and dirty” initial test, to make sure the system can operate and process at least a
minimal work load. The term “smoke test” comes from the saying by hardware developers: “Power it up
and see if any smoke comes out.” In complex systems where the build or integration process is not
straightforward, a smoke test is a quick post-build test to ensure that all the components have

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.225

successfully been integrated together. Its purpose is to provide assurance of the build process before
proceeding to more comprehensive functional, performance or stress tests. A smoke test is also referred
to as a build verification test or a sanity test. A phrase used to describe a subset of tests, typically limited
in number, that can be run against each software build to determine whether the software has regressed
in form or function since a previous build. Synonyms: build validation test, build verification test, build
acceptance test, build regression test and sanity check.
Soak test. Running a system at high load for a prolonged period of time. For example, running several
times more transactions in an entire day (or night) than would be expected in a busy day, to identify and
performance problems that appear after a large number of transactions have been executed.
Soap-Opera Test Soap opera testing takes “normal” user scenarios which the feature testers have
already embedded in their feature test cases, and deliberately exaggerates them in order to heighten the
demands on the system. A technique for defining test scenarios by reasoning about dramatic and
exaggerated usage scenarios. Like a soap opera on television, these scenarios reflect "real life", but are
condensed and exaggerated to depict dramatic instances of system use. When defined in collaboration
with experienced users, soap operas help to test many functional aspects of a system quickly and
because they are not related directly to either the systems formal specifications, or to the systems
features they have a high rate of success in revealing important yet often unanticipated problems.
Software component. See module, component.
Software end game. The last 10% to 25% of as software project – usually activity is hectic as deadline
pressures are intense.
Software engineering. The field of software development and maintenance.
Software fault injection. See error seeding, bebugging.
Software interrupt. See interrupt.
Software maintenance. See maintenance.
Software metrics. Quantitative measures of software processes and products. See measurement, metric.
Software package test. Testing an installed package to ensure that it works correctly, and interfaces and
fits into the technical and business environment.
Software package. A vendor-supplied system which is ready to install, or to adapt the the specific user’s
needs and then install. Also called third-party software, COTS and commercial off-the-shelf software.
Software plan. (1) A plan for a software development, maintenance or deployment project. (2) The high-
level software design architecture for a system.
Software process. A set of activities, methods, practices, and transformations that people use to develop
and maintain software and associated products (e.g., project plans, design documents, code, test cases,
and user manuals).
Software quality analyst (SQA). Title of someone who performs testing and quality activities. See tester.
Software quality assurance (SQA). See quality assurance.
Software quality engineer (SQE). Title of someone who performs testing and quality activities. See tester.
Software quality. See quality.
Software reliability engineering. Method for predicting long-term software reliability based on short-
duration test results.
Software requirements specification. A document that describes the data, functional and behavioral
requirements, constraints, and validation requirements for software.
Software test. A set of activities conducted with the intent of finding errors in software.
Software. The programmed instructions which direct the behavior of computer hardware.
SPA. Software process assessment. See CMM, ISO.
SPC. Statistical process control.
Spike and Bounce Test Spike testing utilizes an intense spike in the work load, usually for a very
short duration, to determine how the system handles abrupt increases in demand. A variation of spike

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.226

testing is to follow the spike with a bounce down to a very low load level, and then continue repeating the
up and down pattern. This tests whether the system can respond to rapid significant changes and re-
direct the use of its resources, for example, through load balancing. An example of a spike test is to
transmit a “send to all” e-mail, where we send a large file attachment to a large group of users at the
same time. For example, we could use one of the PowerPoint presentations from marketing which
incorporates video and audio clips (those marketing guys sure are long-winded). We send the file in
uncompressed form and encrypt it so that every copy has to be decoded at the point of reception, and
send it to everyone in marketing. This transmitted file should be reasonably large. In my experience, the
three biggest hassles with spike-and-bounce testing are (a) determining how high the test spikes should
be, (b) determining how far apart the test spikes should be on average (they should not be evenly
spaced), and (c) determining what bottlenecks or throttles in the test environment may prevent the spikes
from reaching their desired heights. Spike tests are tests that use real-world distributions and user
communities, but under extremely fast ramp up and ramp down times. It is common to execute stress
tests that ramp up to 100% or 150% of expected peak user-load in a matter of minutes rather than the
hour normally allotted for ramp up. These tests are generally only executed after several rounds of tuning.
If all components of the system continue to function normally, no matter how slowly, a Spike Test passes.
Spiral development. See iterative development.
Spiral model. An iterative or evolutionary software development method. See RAD, iterative development,
prototyping, extreme programming, agile methods.
Spreadsheet test. Validating that the spreadsheet model and implementation are accurate.
SQA. See software quality assurance, quality assurance.
SQE. Software Quality Engineering.
SQL (Structured Query Language) test. Testing inquiry calls, data retrievals and updates to a relational
database and made using an SQL-compatible interface or data management tool.
SRAM. Static random-access memory. A type of RAM which retains its data content as long as the
system is powered on. Contrast with DRAM, where the memory must be continually refreshed (re-written)
even if there is no change in the data contents.
SRE. See software reliability engineering.
Stability Test Stability tests exercise a system at and beyond the worse expected demand it is likely to
face. The majority of critical deficiencies in the system will have already been identified during the
execution of load/performance tests, so tests deal more with assessing the impact on performance and
functionality under a heavy or unreasonable load. Stability scenarios will also identify many other system
bottlenecks not previously noticed, which may in fact be partially responsible for earlier identified
problems. A stability test is a type of load test that assesses how dependable and robust a Web
application is, rather than its responsiveness or throughput. This kind of test places a consistent work
load on the application being tested for a considerable period of time.
Stability. Do existing features, which have not been changed, perform the same as they did in earlier
versions of the system, after an unrelated feature has been changed?
Stack. An area of memory that contains a last-in-first-out queue of storage for parameters, automatic
variables, return addresses, and other information that must be maintained across function calls. In
multitasking situations, each task generally has its own stack.
Staging Server A server used as a temporary stage to test new or revised Web pages before they are
made live.
Standard Benchmark Test This type of testing uses a standard work load rather than a user-specific
one. It is common when it is difficult to discern how a system actually will be used (or is already being
used), so comparability replaces realism. We measure performance when the system is under this
standard load (also called a benchmark in some circles), instead of under a load which is based on the
behavior patterns of a group of users. Standard benchmark testing is often used in comparing vendors’

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.227

products, such as database management systems (DBMS), which many different users can install and
use in many different ways. The standard benchmark provides a means to compare the performance of
the competing products under the same load and with the same resources. For this reason, testers
sometimes call it product comparability testing. Industry associations such as the Transaction Processing
Performance Council (TPC) provide benchmarks, as do the larger software, hardware and network
services vendors. SAP, for example, provides a benchmark for its enterprise resource planning (ERP)
software. The Benchmarking Institute of Gilroy, California, maintains a list of publicly available
benchmarks. In many vendors, performance testing is a process of running industry benchmarks with the
optimal configuration of a system and its environment, in order to obtain the best possible performance
numbers for marketing purposes. In addition, most vendors of highly configurable products offer their
products for sale in a limited number of pre-set configurations, each with a recommended standard
support infrastructure for that configuration. Any one of these configurations can provide a starting point
from which an individual customer tunes and optimizes its own system installation, but the vendor tests
the system’s performance and robustness using only the vendor’s standard configurations.
Standard Deviation A measure of dispersion which tells how values are dispersed from the mean
(average) in a set of data. It is calculated by taking the square root of the variance.
Standard. (1) Measure. (2) Level of acceptability to be accomplished. (3) Guideline. (4) Mandatory
practice.
Start-up code. Initial small software or firmware module, used to start the computer and load the
operating system. See bootstrap, IPL.
State Transition Diagram A graphical notation which shows the states of a system and the transitions
among those states. See state-based testing.
State-transition diagram test. A technique to develop test cases based on the states that a system can
have. The idea is to test the triggers or stimuli that cause a transition from one condition (the initial state)
to another (the final state). Popular with engineers, who usually already are familiar with this approach
from engineering designs. These diagrams are also called finite-state diagrams.
Static analysis. Analysis of program code carried out without executing the program.
Static analyzer. A tool that carries out static analyses.
Static test. A test that does not require actual computer execution, e.g., a peer review or desk checking.
Statistical process control. SPC is a quality technique in manufacturing operations, which uses control
charts to plot the behavior of repeatable processes and to identify variations which are not successful.
Statistical quality assurance. Process improvement methods which use statistically valid measurements
of products and processes, and statistical analysis of these measurements.
Statistical Sampling Use of statistical techniques to determine the ideal size of a sample for testing,
i.e., how many test cases are required to prove or disprove a hypothesis about what defects are present
in an entire population.
Statistical sampling. Use of statistical techniques to determine the ideal size of a sample for testing, i.e.,
how many test cases are required to prove or disprove a hypothesis about what defects are present in an
entire population.
Statistical testing. Testing which uses statistical methods in various ways, such as sampling, design of
experiments and orthogonal arrays.
STD. (1) Standard – a common abbreviation on the U.S. government and especially in the military. (2)
State transition diagram.
Steady-State Work Load In a load test, a steady-state work load is a work load type where a
consistent number of virtual users are run for the entire duration of the test. The use of a steady-state
work load provides exact response time and throughput information for a given number of users. This
type of work load is often employed for stress and stability tests.
Step-wise refinement. A top-down iterative method of requirements definition, design and programming.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.228

Also called decomposition or partitioning.
Storage test. Testing that verifies the program under test stores data files in the correct directories and
that it reserves sufficient space to prevent unexpected termination resulting from lack of space.
Strategy. Overall approach to getting something done. The set of decisions that have a significant
potential to make a major impact on the success of the undertaking.
Stress Test A stress test is one which deliberately stresses a system by pushing it beyond its specified
limits. The idea is to impose an unreasonable load on the system, an overload, without providing the
resources which the system needs to process that load. In a stress test, one or more of the system
resources, such as the processor, memory, or database I/O access channel, often “maxes out” and
reaches saturation. (Practically, saturation can happen at less than 100% of the theoretical usable
amount of the resource, for many reasons.) This means that the testware (the test environment, test
tools, etc.) must be sufficiently robust to support the stress test. We do not want the testware to fail before
we have been able to adequately stress the system. Many bugs found in stress testing are feature bugs
which we cannot see with normal loads but are triggered under stress. This can lead to confusion about
the difference between a feature bug and a stress bug. Some testers prize stress testing because it is so
fruitful in finding bugs. Others think it is dangerous because it misdirects projects to fix irrelevant bugs.
Stress testing often finds many bugs, and fixing these bugs leads to significant delays in the system
delivery, which in turn leads to resistance to fixing the bugs. If we find a bug with a test case or in a test
environment which we can’t connect to actual use, people are likely to dismiss it with comments like: “The
users couldn’t do that”, “.. wouldn’t do that” or “... shouldn’t do that.” Test application under a load for a
period of time to discover the ability of the application to handle work load. Most commonly collects
various performance related measurements based on tests that model varying loads and activities that
are more “stressful” than the application is expected to encounter when delivered to real users. Sub
categories may include: spike testing (short burst of extreme load) extreme load testing (load test with
“too many” users) hammer testing (hit it with everything you’ve got, often with no delays) stress testing
involves subjecting the product to heavy loads or stresses. Unlike volume testing, a heavy stress test is a
peak volume of data encountered over a short span of time. If a product can only handle 50 simultaneous
users on the system, then exercise the product with 51, 100, 200, etc users. Any testing involving
challenging inputs or environments; where challenging means at, near, or exceeding the actual operating
limits of the product under test (not merely its stated limits). Stress testing is done for the purpose of
understanding how reliability and performance degrades over time as the product is "stressed" by such
challenging circumstances. Good stress testing requires that the test designer analyze the potential
vulnerability of the product to stress, so that the product is indeed challenged in every relevant manner
and dimension.
Stress, Robustness and Reliability Although stress, robustness and reliability are similar, the
differences among them mean that we test them in related but different ways. We stress a system when
we place a load on it which exceeds its planned capacity. This overload may cause the system to fail, and
it is the focus of stress testing. Systems can fail in many ways, not just from overloading. We define the
robustness of a system by its ability to recover from problems; its survivability. Robustness testing tries to
make a system fail, so we can observe what happens and whether it recovers. Robustness testing
includes stress testing but is broader, since there are many ways in which a system can fail as well as
from overloading.
String test. A test performed on small strings of components which are connected together in their natural
linkages.
Structural test. Testing based on an analysis of internal workings and structure of a piece of software.
See also white box test.
Structured design. A design method which focuses on modularity.
Structured programming. A programming method which emphasizes modularity and which prohibits

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.229

jumps outside of modules.
Structured Test A test which uses defined processes and analytical test techniques.
Structured testing. Testing which uses defined processes and analytical techniques such as equivalence
partitioning.
STSC. Software Technology Support Center, a part of the U.S. Air Force with useful materials available
to testers.
Sub-test. Component or part of a test.
Supportability. The customer support people can adequately support this system, e.g., they have
sufficient aids to be able to troubleshoot telephone calls from customers.
Survivability. In systems and networks, the ability to recover and continue in operation, even with a
degraded level of service. What is the likely survivability of the system after disasters, even if it continues
operation in a degraded mode with limited capabilities? This is an important characteristic of open
networks, such as the Internet, where equipment is continually added and removed, users are
continuously connecting and disconnecting, and where the overall network is expected to continue
operating even when parts of the network are down.
Sustainability. Types of sustainability issues include data integrity, auditability, maintainability. re-usability.
avoidance of side effects, and supportability.
SUT. System under test.
Symptom. An indication that something undesirable has occurred or may occur.
Synchronization. (1) Coordination between co-dependent events. (2) The process by which an automated
testing tool waits until an event occurs.
Synchronization Test This type of testing attempts to stress a system by causing timing problems and
out-of-synch process. These are also called race conditions. Systems often have inadvertent and
unrecognized assumptions built into them, about the expected sequence of events of the expected timing
of events. Let’s say that the system assumes if event A always precedes event B. What happens if this
assumption is not met? Let’s say an event happens later – or earlier – than anticipated. Does the system
time-out (and is not supposed to) because the late event? Does the early event go unnoticed? The aim of
synchronization test cases is to answer these questions.
Syntax-driven test. Technique used for testing compilers and operating systems. Based on the syntax of
the language or input commands, build a command-line generator or a table of alternative input
commands, including both valid and invalid values, and use these to drive the testing.
System design. See design.
System development life cycle (SDLC).
System integration.
System operational risk. A significant possible loss which may be caused by using the system.
System release.
System requirement. See requirement.
System risk. A significant chance of a loss associated with a particular system.
System Test (1) Highest level of application functionality testing performed by the systems group, or by
a combined systems and user group, and usually on the completely assembled product. (2) Any test
which is performed on the fully integrated system. Synonym: functional, feature or behavioral test. Testing
that attempts to discover defects that are properties of the entire system rather than of its individual
components.
Table & Array Testing. Tests of the table look-up and maintenance mechanisms, including security,
and tests for the data integrity of the table entries. May include tests like trying to delete a non-existent
record, detection of duplicate entries, ability to reject invalid data (e.g., changing a customer name to all
blanks).
Target hardware. The platform where the software will run in live operation, as opposed to the

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.230

development or test platform. See host; environment.
Task. (1) A work activity, which may be part of a project or stand-alone. (2) A piece of computational work
which is executed by a computer processor. Unlike processes, tasks share a common memory space
and must be careful to avoid overwriting each other's code and data.
TBD. To be determined. Often found in test plans and other planning documents. When in doubt, the
testers can insert “TBD” to help fill the test plan. (This comment is meant as a joke in dubious taste.)
Tcl. Tool command language. Popular C-based test language.
Technical compliance. Does the system comply with the relevant technical standards, e.g., operating
system interface standards, system documentation standards? Does the system or product support an
open, plug-and-play architecture? Technical compliance may overlap – or conflict -- with compatibility.
Technical risk. A potential technical problems which cause a project or system to fail.
Technology. Applied science, engineering.
Test automation. Testing employing software tools which execute tests without manual intervention. Can
be applied in GUI, performance, API, etc. testing. The use of software to control the execution of tests,
the comparison of actual outcomes to predicted outcomes, the setting up of test preconditions, and other
test control and test reporting functions.
Test bed. The test environment. Alternative definition: a restful support mechanism for tired testers (this
idea is conceptual, never implemented). A test bed is an execution environment configured for testing.
May consist of specific hardware, OS, network topology, configuration of the product under test, other
application or system software, etc. The Test Plan for a project should enumerated the test beds(s) to be
used.
Test case A particular condition or situation to test.
Test case design. The process of analyzing the decision logic and characteristics of a feature or a set of
features, and deriving a set of test cases to exercise that feature. Test case design is based on the
requirements, expected behavior and constraints of a system or a software component.
Test case. An executable test of one particular situation or condition, with a distinct or unique set of input
data values and initial conditions (i.e., the environment), and with a corresponding pre-defined expected
result of the test. Synonyms: test script, test condition, test scenario, test assertion, test specification.
Test Case / Test Data Library This library contains the test suites, test cases and components from which
the test cases are built. May include procedural components (e.g., re-usable test software), and data
components (e.g., tables of input data values and expected results).
Test Case Configurator These tools tune or configure generic test cases to fit specific versions of the
system under test, or specific test environments (e.g., different platforms). The only tools available to
automatically configure test environments are Ahome grown@; no tools are known to be commercially
available.
Test Case Generator These tools generate test cases directly from the specifications (automated test
planning). Based on the functional specifications, the tools use techniques like cause-effect graphing to
identify what to test. The tools generate test cases that are intended to be ready for execution.
Test Case Selector These tools extract subsets of test cases from test case libraries, according to a set
of selection criteria.
Test Case Version Control Version control on the test case library.
Test Data Base Loader In data-rich systems, the amount of test data can be voluminous (hundreds of
gigabytes in the case of Experian, formerly known as TRW Credit Data). These tools maintain and load
test data bases, e.g., data bases of customers and orders.
Test Data Generator These tools automatically generate sets of test data, in the form of test transactions
or test master data bases.
Test Data Manager These tools organize and manage test data (test cases, test results, etc.).
Test documentation. Written record of test plans, test cases and test results.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.231

Test Driver The test driver is a tool which drives the testing process. Typically, this tool interfaces with
the system under test (SUT), either generates or extracts test data, initiates the test process, and
undertakes a series of steps to feed in the test data. Examples include call generators and TCP/IP
packet drivers. Also called the test engine. In commercially available tools, the test driver is usually
combined with a test results capture tool.
Test Duration How long should a performance test run? Five seconds, five minutes or five hours? With
the fast processing speeds available today, more testing can be done more rapidly, and extended test
durations arguably have become less important. Because an entire project may have to wait for hours or
days while a long-duration test runs, it is a good idea to review the bug reports to see what new
information, if any, the second hour’s worth of testing adds beyond the first hour, the third hour beyond
the second, and so on. In addition, the field of software reliability engineering does not require
inordinately long test times in order to evaluate system reliability. And if we are preoccupied with the
mechanics of just running the test, we don’t have much time to think and strategize. The minimum test
duration depends on these factors: The time needed to initiate a process, including checking the test pre-
conditions and starting test tools, ramp up and reach a reasonably steady state of operation. The time
needed to gather sufficient data to satisfy sample size requirements or targets for data sufficiency. For
example, in some test runs the work load varies in a roughly periodic pattern during the performance
measurement, to reflect the typical pattern of how the load ebbs and flows over time. This provides a
more realistic picture of the system’s performance characteristics than testing with an even load, but the
test duration must be long enough to capture at least one full period of data. Whether the test objectives
include finding so-called slow burning fuse defects, such as slow memory leaks, which can take days to
surface.
Test Environment The support infrastructure which is needed to operate the system in test mode, and
the facilities needed to test it, including test libraries & data files, procedures, tools, etc. Synonyms: test
infrastructure, test bed. The test environment is the hardware and software environment in which tests
will be run, and any other software with which the software under test interacts when under test including
stubs and test drivers.
Test Environment Management Tool Any tool used to help manage the environment, e.g., configuration
management in the test environment.
Test factor. Any characteristic which can vary during live operation, such as the sizes of the
semiconductor memory and the hard disk installed in a personal computer, and which may affect the test
results.
Test factor analysis. The process of identifying the test factor combinations which need to be tested.
Each test factor can have several possible options (e.g., in the case of the hard disk, the size options
could include 1 GB, 5 GB, 10 GB and 25 GB). All combinations of test factors are usually much too
numerous to test, so test factor analysis identifies which combinations of test factors actually need to be
tested, under various assumptions about the relationships among these test factors. See orthogonal
arrays.
Test harness. Support infrastructure required to generate, format and feed in the input data required for a
particular test; and also to capture, interpret and log or present the results. See test environment.
Test infrastructure. See test environment.
Test log. The repository of the results of each test case executed in the test project.
Test pattern. A re-usable test procedure, template or checklist.
Test Plan A plan to test a system, product or subsystem A document describing the scope, approach,
resources, and schedule of intended testing activities. It identifies test items, the features to be tested, the
testing tasks, who will do each task, and any risks requiring contingency planning.
Test Procedure The series of tasks or steps which must be performed in order to execute a test case
or for another test process. The procedural aspect of a given test, usually a set of detailed instructions for

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.232

the setup and step-by-step execution of one or more given test cases. The test procedure is captured in
both test scenarios and test scripts.
Test requirement. A brief statement of a test need, to serve as the basis for test case design.
Test Results Capture Tool This tool interfaces with the system under test, and captures and logs the test
results. This means that the capture tool must be fast enough to capture transient behavior. The test
results capture tool may or may not be invasive, i.e., it may interface only externally and capture the end
results, or it may use probes to capture information about the internal state of the system during testing.
Test Results Data Manager Manages the test result log, which is usually voluminous. Provides
capabilities to store test results,, cross-reference them to test cases and SUT versions, browse and
extract test results, and analyze patterns. Usually also perform version control on the test results.
Test Results Log The test log is simply a record of the results of each test case that has been executed.
While the test log appears humble and ubiquitous, and is seldom seen outside the test team=s work area,
it plays an important role in testing.
Test script. (1) The generic condition which needs to be tested, or alternatively the family of all test cases
which test that condition (i.e., the test cases exercise the same condition, and are identical except for
variations in their input data values and expected results). The test script is often called a test condition, a
test scenario, a test procedure or even a test case, as there is much use of confusing terminology in this
area. (2) A document that specifies for every test and in a test suite: object to be tested, test requirement,
initial state, inputs, expected outcome, and validation criteria. (3) Commonly used to refer to the
instructions for a particular test that will be carried out by an automated test tool.
Test specification. A document specifying the test approach for a software feature or combination or
features and the inputs, predicted results and execution conditions for the associated tests.
Test Status Reporting Tool These tools extract test results, and automatically compile reports and
graphs of test project status and trends.
Test suite. A group of related test cases. Synonyms: test cluster, test group
Test tool. Computer software or hardware used in the testing of a system, a component of the system, or
its documentation.
Testability Can the system be validated, i.e., shown to work in an acceptable manner? Testability is the
ability to perform trustworthy and cost-effective testing and degree to which a system or component
facilitates the establishment of test criteria and the performance of tests to determine whether those
criteria have been met.
Test-driven development. Testing methodology associated with Agile Programming in which every chunk
of code is covered by unit tests, which must all pass all the time, in an effort to eliminate unit-level and
regression bugs during development. Practitioners of TDD write a lot of tests, i.e. an equal number of
lines of test code to the size of the production code.
Tester. A person who tests a system or component. "The guy who takes away the punch bowl just when
the party is getting good." (To slightly misquote Alan Greenspan, chairman of the Federal Reserve
Board.)
Test-first design. Test-first design is one of the mandatory practices of Extreme Programming (XP).It
requires that programmers do not write any production code until they have first written a unit test.
Testing. An organized process of: (1) validating that a system works as expected, (2) identifying
discrepancies, i.e., the variances between the actual vs. the expected results from the use of a system,
and (c) providing information about the state of the system.
Testware. The name for the support tools, test case libraries and test databases, test procedures,
training, and the test lab support organization. See test environment, test harness.
Think Time How long a user spends viewing a page before clicking the next link.
Third-party software.
Thrash. This happens when a processor becomes unstable and sends most of its time switching among

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.233

tasks, rather than working on those tasks.
Thrashing Thrashing is computer activity that makes little or no progress, usually because memory or
other resources have become exhausted or too limited to perform needed operations. When this
happens, a pattern typically develops in which a request is made of the operating system by a process or
program, the operating system tries to find resources by taking them from some other process, which in
turn makes new requests that can't be satisfied. In a virtual storage system (an operating system that
manages its logical storage or memory in units called pages), thrashing is a condition in which excessive
paging operations are taking place. A system that is thrashing can be perceived as either a very slow
system or one that has come to a halt.
Thread Testing. A variation of top-down testing where the progressive integration of components follows
the implementation of subsets of the requirements, as opposed to the integration of components by
successively lower levels.
Thread. A computational task. In multi-threaded systems, multiple threads run concurrently, and share
the same software components and common data.
Threat analysis. See hazard analysis.
Threat. See risk.
Throughput The amount of information moved in a given amount of time. Throughputs are usually
measured in Kbps, Mbps, or Gbps, but may be measured in transactions per second. The throughput rate
is the average rate at which an application processes requests. Throughput rates are an important factor
in the performance of an application. Common throughput goals include that the application be able to
handle a specific number of requests per hour and that the processing time for a high percentage of
requests be below a specific time limit.
Throughput Test Throughput testing measures how much traffic passes through a system within a
specified period of time and under a specified load. This test load may be light, average, heavy or vary
over time. We can measure throughput in megabits per second, events (database queries, requests or
transactions) per second, or another metric. The selection of the units of measure for throughput can
influence the test results. For example, let’s say that the test objective is to rank a group of competing
servers from best to worst, in terms of throughput. Their rankings may be different if we measure the
throughput in megabits per second than in events per second. In other words, a server which is the best
of the group when we measure the servers’ performance in megabits per second could look the worst in
terms of the number of database queries processed per second. (Can you identify possible reasons for
this seemingly illogical situation? Hint: a high number of queries will not translate into a high number of
megabits if the average query length is short. Or if we count only the directly useful data in the queries,
not the overhead such as headers and trailers wrapped around the core of useful data, and the queries
contain large amounts of inefficient overhead in the form of extra bits.) The recorded throughput also
depends on where in a system we count the bits or the events – the volumes of events usually are not
the same at each internal point. We can count the throughput in a network as the amount of traffic which
originates from, is received at, or passes an internal point within a given period of time. In a simple
situation where one specific input triggers each output, the count of the output traffic received at the
destination is exactly the same as the count of the input traffic. But this ratio can be less than 1 to 1,
within a given period of time, if there are bottlenecks and inefficiencies within the system, or can be
higher than 1 to 1 if a single stimulus triggers the broadcast of multiple messages. There also may be
questions about what to count and how to count it. For example, let’s say that a Web server has an
ongoing, low-level flow of administrative management messages and error messages, as well as the
“real” traffic, namely the requests from visitors to the Web site which this server supports. The measurers
will need to decide which of these traffic categories to include in their throughput counts.
TickIt. A British method or assessing the effectiveness of quality practices. Similar to CMM and ISO
certification.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.234

Time of Peak Demand (e.g., the Peak-Demand Hour or Peak-Demand Minute) The timing of the peak
demand. The peak-demand hour in a time period (e.g., a day or week), is the hour with the highest
volume during that period. It is also referred to simply as the peak hour. There can be more than one time
of peak demand within a duration, if two or more intervals have the same volume. The peak-demand hour
in a typical week will occur at the same time as the peak hour of one day during the week, but may or
may not occur at the same time as the peak hours in the other days of that week.
Timeliness. Are the developers able to deliver or modify the system within the timeframe when it is
needed?
TLA. Three letter acronym. A key tool in snowing managers.
Tolerance. (1) The allowable margin for imprecision before is considered to be unacceptable.
Top-down test. An approach to integration testing where the component at the top of the component
hierarchy is tested first, with lower level components being simulated by stubs. Tested components are
then used to test lower level components. The process is repeated until the lowest level components
have been tested.
Total quality management (TQM). (1) A top-down, organization-wide effort to improve quality and
customer satisfaction through publicizing the importance of quality, training, motivation and focus on
quality improvement opportunities. (2) A company commitment to develop a process that achieves high
quality product and customer satisfaction.
TQM. Total quality management.
Trace. A record of the execution path through a system or software component, usually in the form of a
list in time sequence of the lines of source instructions which were executed.
Traceability Matrix. A document showing the relationship between test requirements and test cases.
Traceability. The ability to link test cases back to the specific system requirement(s), feature(s),
configuration(s) or constraint(s) being tested.
Transaction flow test. A technique to develop test cases from transaction flows. Identify the inputs to a
system, predict the end results of each system (outputs and updates to permanently stored data), and
test to verify that these results do in fact occur.
Transaction In Internet and Intranet applications, a transaction is a sequence of Web application
accesses, interspersed with user interaction, and having a certain logical unity. For example, a
transaction might consist of a user visiting an e-business application, browsing its contents, ordering a
product, and then leaving the application.
Trap. An interruption of processing which is triggered by the internal hardware, for example, the
processor might call a trap if an illegal opcode is encountered during execution. See interrupt.
TRR. Test readiness review, to ensure the test entry criteria have been met.
Typical Hour An hour with average traffic and the demand generated by that traffic.
UAT. User acceptance test.
UML. Unified Modeling Language.
Unified Modeling Language. A standard set of notations and conventions for documenting use cases.
Unit or Component Test A stand-alone test of a low-level component, module or subprogram test.
Unit or component test. A stand-alone test of a low-level component, module or subprogram. It is the
foundation for later levels of testing. Usually this is a personal activity of the software engineer or author,
who should take accountability for his or her own work.
Unit. Separately testable element, specified in the design of software.
Upgradeability. Are there planned future upgrade paths, i.e., as the use of the system grows, can the
software, databases, hardware and networks be upgraded reasonably easily to support this growth?
Upstream/downstream test. This technique applies where there is a series or sequence of systems,
which feed data from an upstream system to a downstream one. The technique focuses on (a) which
upstream data feeds must be tested after a change to a system, and (b) which downstream system(s)

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.235

and data feeds are likely to be impacted by that same change.
Usability Test This type of testing involves the usability of the system or is the product designed well
enough for the consumer who will be making daily use of the application. This type of testing is often
performed by beta testers and a user acceptance testing team to determine the usability rating.
Usability test. (1) Checking the product's user friendliness, which is it's ease of use and ease of learning
for the typical user. (2) A test which addresses these questions: Is the system easy to use and to learn?
Does it improve customer satisfaction, productivity, business reliability and user morale?
Usability. Can the typical user run the system productively and without aggravation? Is it easy to learn
and use? Usability considerations also include ease of training, availability of on-line help built into the
system, availability of work-arounds, flexibility to configure or customize the system to individual user
needs, and ability to meet divergent user needs.
Usage-Based Test Realism is the key success criteria for this type of testing. We expect the
performance measured in testing to predict closely the performance which the users will experience in
live operation, by a particular user group which is working in a particular technical environment. We take
care to ensure that the ways we exercise the system in testing are the same as it will encounter in live
operation, and the test environment closely mimics the infrastructure which will be used to support the
system in operation. With reality-based testing, we move away from finding performance and robustness
defects for the sake of finding defects, that is, problems which can be created in the test lab but which the
users are unlikely to ever encounter. Instead, the lab testing helps find defects which otherwise could
have consequences for the users.
Use Case A model of how users interact with a system.
Use case. A use case describes the interaction between a system user and the system which fulfills a
particular need of the user. An example of an interaction which can be described by a use case is the act
of withdrawing money from an automated teller machine.
User acceptance test (UAT). See acceptance test.
User Delay How long a user spends viewing a page before clicking the next link.
User Experience Any measurement that relates to what a user actually sees (experiences) when they
use the system. User experience generally refers to end-to-end response time. User experience is about
usability, which has a broader scope than user interface (UI). It includes the application's look-and-feel;
not just what the user-interface provides from a functional point-of-view. However, there is a component if
user experience that is concerned with UI. Encompasses all aspects of the end-user's interaction with the
company, its services, and its products. The first requirement for an exemplary user experience is to meet
the exact needs of the customer, without fuss or bother. Next comes simplicity and elegance that produce
products that are a joy to own, a joy to use. True user experience goes far beyond giving customers what
they say they want, or providing checklist features. In order to achieve high-quality user experience in a
company's offerings there must be a seamless merging of the services of multiple disciplines, including
engineering, marketing, graphical and industrial design, and interface design.?
User Group In a load test, a user group is a number of virtual users regarded as a single unit. The
virtual users in a user group all carry out similar transactions with the Web application under test.
User In the context of e-business, a user is a person who accesses the World Wide Web by means of a
computer and a Web browser. Users are the customers, or potential customers, of e-business
applications. The Web behavior of real users is simulated in load testing through the use of virtual users.
User Interface (UI) The interface through which a person works with a system.
User Scenario Test User scenario test. A technique to develop test cases based on users’ work flows
and their typical utilization of the system to perform their jobs or business functions, and use these as the
basis for testing. Useful for testing external parts of systems that have user visibility, such as the web
pages or GUI front ends of systems.

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.236

User. A person who uses the software or the software-based product such as an embedded device.
V&V. Independent Verification and Validation (IV&V).
Validation The process of determining the system does the right things, i.e., complies with the stated
requirements; performs the functions for which it is intended; meets the organization's goals and the
users' needs. Validation is the process of comparing the intermediate and final deliverables during
system development back to the original overall project objectives. The process of evaluating software at
the end of the software development process to ensure compliance with software requirements. The
techniques for validation are testing, inspection and reviewing.
Vector. A list, column or one-dimensional table.
Verification The process of determining the system does things right, i.e., was built following
reasonable design principles; provides a consistent user interface; performs the selected functions in the
correct manner; accesses the right data, and has undergone an appropriate series of reviews.
Verification is the review of interim work steps and interim deliverables to ensure they are acceptable,
and is the process of comparing the deliverables of an intermediate phase to the conditions imposed at
the beginning of that phase. Verification is the process of determining whether of not the products of a
given phase of the software development cycle meet the implementation steps and can be traced to the
incoming objectives established during the previous phase. The techniques for verification are testing,
inspection and reviewing.
Version control. The mechanism(s) for controlling changes to systems and assessing their current status.
In more complex situations, this control is entitled "configuration management" and extends to the
system environment, documentation, test beds, test results, interfaces, and other system-related areas.
Version Control Tool Since most systems being tested could be set to many different configurations in
live operation, these tools set, control and change the configuration as needed for testing. They also
record the specifics of each test configuration, so that the configurations can be cross-referenced to the
test results. These tools may be the same as -- or different to -- the tools used to manage the
configuration of the test environment outside the system being tested.
View or Page View A single user-initiated event, activity or transaction; typically a request by a visitor
to download a web page in order to view it. When a visitor views a web page containing four graphs, the
number of hits is five – one for the page itself and for each of the graphics files. For this reason, web
statistics measured in views are a more useful metric than the numbers of hits.
Virtual machine. A computer simulated in software on a different hardware platform.
Virtual User or Virtual Tester A user simulated by an automated testing tool. Performance tests are
run with virtual users. A virtual user is a simulation of a real user conducting transactions on an
application. During a performance test, many virtual users can be run from one computer. Load tests run
a number of virtual users. A virtual user is a program that acts just like a real user would in making
requests to a Web application. During a load test, a considerable number of virtual users can be run on
one computer, in this context called a driver machine.
Virus test. Testing that virus controls are adequate.
Visualization. A means to allow users to navigate and search "naturally" through unfamiliar information
landscapes and to manage large-scale and complex multimedia data sets.
Visit or Session The series of individual events or activities (usually the externally visible interactions
between one user and the system), which occur from the time when the user logs on to the system until
the same user logs off.
Visitor or User The person who visits the web site (and thus initiates a session).
V-model. See waterfall approach.
Volume Test This type of testing usually combines functional testing, which is conducted with sizeable
volumes of test transactions, with performance and robustness measurement -- getting “two birds with

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.237

one stone”. Volume testing is sometimes called parallel testing (see below), when we run the same
volume of test transactions in before-and-after comparisons, before and after a system modification is
made. Volume and parallel testing are most popular in mainframe testing because their logistics are
relatively straightforward in that environment. Volume testing is sometimes called work flow testing also.
Any test focused on “how much” instead of “how fast”. Often related to database testing. The distinction
between "volume" and "load" is that volume focuses on high volume and does not need to represent
"real" usage. Subject the product to heavy volumes of data. This form of testing shows that the
application can not handle the volume of data specified in its objectives. For instance, batch process
designed to import data on a nightly bases may have a limit to the amount of information it can handle
before failing, so give the system a larger amount than this to see how it responds.
Volume test. Testing by processing a significantly large volume of transactions, which often are copies of
live data. Volume testing in some circumstances also is called parallel testing. Alternatively, the term
“volume testing” is sometimes also used to mean load or stress testing, which are different from before-
and-after comparison parallel testing. Volume Testing includes testing which confirms that any values that
may become large over time (such as accumulated counts, logs, and data files), can be accommodated
by the program and will not cause the program to stop working or degrade its operation in any manner.
Vulnerability. See risk.
Walkthrough. A review of requirements, designs or code characterized by the author of the material under
review guiding the progression of the review.
Watchdog Timer A hardware timer that is periodically re-set by software, and then used to count down
as the execution continues. If the software crashes or otherwise experiences problems, the watchdog
timer will expire (count down to zero), and the system is re-set automatically.
Waterfall model. Traditional system development process which follows a series of phases, such as
requirements definition, design and coding. See: V-model, system development life cycle (SDLC).
WBS. See work breakdown structure; functional decomposition.
Weakness. See risk.
Web-based application test. Testing applications which use the Web, such as Web pages and Web sites.
Whistle-blower. Someone who alerts the managers, regulators or authorities of a significant problem. May
be accompanied by personal risk.
White box test. A low level, detailed test, based on the internal structure of a program or system rather
than on the functional specifications. Synonyms: structural test, component test, code-based test, unit
test.
White-Box Test A low level, detailed test, based on the internal structure of a program or system rather
than on the functional specifications. Syn. structural test, component test, code-based test, unit test.
White box testing treats the system as a collection of many parts. During white box testing, many
diagnostics may be run on the server(s), the network, and even on clients. This allows the cause(s) of the
bottlenecks to be much identified more easily, and therefore addressed. White box testing can go as
deep as individual lines of code, database query optimization, or memory management of segments of
code.
Work breakdown structure. See functional decomposition.
Work Load and Work Flow Test A work load is a mix of demands on a system. The term work flow is
sometimes used to mean the same thing, or we simply call it the load. Depending on the situation, these
demands can be events, transactions, queries, interrupts, or other demands, or a mix of these. We could
claim that by this definition any mix of demands qualifies as a work load– and it does. The critical
question is what the work load represents. Having the appropriate test work load (or more likely, set of
related work loads) is crucial, because most system characteristics can vary significantly with the work
load – performance, reliability, and so on. This means that the critical success factor for a work load is
realism. If the work load used in testing is reasonably close to the work load of a particular user, then we

Appendix A: Basic Definitions and Concepts

 Copyright © 2005 Collard & Company

 Case Study 1.238

can say with confidence that the conclusions formed by testing in our lab are likely to apply to that user. If
not, it is anybody’s guess how well the lab findings predict what will happen in that user’s environment.
The term “work load” test does not imply any particular set of test objectives or measurements (though
internally an organization might use the term as a label for their own particular flavor of testing)
Depending on what we want to accomplish, a work load can be used in many different types of testing.
For example, we could run a work load while we measure the system’s performance (response time,
throughput, availability, etc.) Or we could run a heavy work load to stress the system, attempt to overload
it and see if it recovers from failures. Work loads are used in interoperability testing (checking if
subsystems connect and communicate), configuration testing (checking if features are compatible across
different system versions, and across different support hardware, databases and networks), and so on. A
complicating fact is that many systems are highly configurable – they can be modified through changes in
switch settings, patches and upgrades to behave differently, and can run with different variations of
hardware, etc. Another complication is the huge number of users of a major system, such as an operating
system (OS) from a major vendor, all of whom use the system in their own ways. We need a scheme to
manage the numbers of variations of support environments, system settings and system uses. The
common way to resolve being overwhelmed by the number of variations is a categorization model, which
allows us to group together similar users by type of work load (usage pattern) and by type of support
environment.
Work Load Distribution A work load distribution is a representation of the functions performed by a
user community on a system. For example, during the course of a day on a retail-based website, most
users are shopping, some are searching for a specific product, some are finalizing purchases and
checking out, while a single administrator may be updating product prices. A work load distribution is
based on a percentage of users performing a specific function over a given period of time. Using the
above example a work load distribution could be: shopping – 83%, searching - 5%, checking out – 10%
and administration - 2%. In a load test, the work load is the total amount of simulated activity to which the
Web application being tested is subjected. A work load consists of a designated number of virtual users
who process a defined set of transactions in a specified time period. Work loads can be of various types,
depending on the requirements of a particular load test. The principal types are steady-state work loads,
increasing work loads, artificial work loads, and scenario-based work loads.
Work Load Parameters Are characteristics of users' requests such as traffic intensity, system load,
and resource consumption. Pay special attention to those work load parameters that will be affected by
your alternative performance objectives as well as those that have a significant impact on performance -
CPU utilization, total I/O operations, memory usage, page faults, and elapsed time.
Work plan. Description of the activities needed on a project to accomplish the project’s goals.
Workaround. A fix for a problem, generally an expediency or compromise that is quick, inexpensive and
temporary.
Workflow Testing. Scripted end-to-end testing which duplicates specific workflows which are expected to
be utilized by the end-user.
XML Extensible mark-up language.
XP. Extreme programming, a software development methodology.

Appendix B: Establishing Performance Requirements

 Copyright © 2005 Collard & Company

 Case Study 1.239

APPENDIX B. ESTABLISHING PERFORMANCE REQUIREMENTS

An Example of a System Performance Requirement

Transaction or Event Throughput Load Volumes

(transactions per minute)
Delivery Time or Response
Time Goals

1. Request to download the
table of contents page of the
catalog.

200 3 seconds or less, as measured at
the visitors’ workstations; 90% of
the time or more

2. E-mail notification of the
new catalog’s availability

1,000 5 minutes or less; 90% of the
time or more

3. Request detail page of the
catalog

100 3 seconds or less; 90% of the
time or more

4. Conduct book search 25 7 seconds or less; 90% of the
time or more

5. Place a new book order 10 7 seconds or less; 90% of the
time or more

6. Request home page of the
book club

50 3 seconds or less, as measured at
the visitors’ workstations; 90% of
the time or more

7. Other background noise 100 No goals set

Related Requirements Aspects to Measure Acceptable Thresholds

8. Resource utilization Main processors, memory and
network links

Utilization cannot exceed 65%,
reserve capacity is not to fall
below 35%.

9. Error rates Transactions listed above Error rates not to exceed 1% for
each transaction type

9. Availability Transactions listed above Availability is covered by the
error rate threshold (*)

(*) Each test case is defined to contain one transaction as an input stimulus and the related set of outcomes for that
stimulus. All attempts to execute a test case are counted. Transactions are counted as errors if they are not
completed because the system is unavailable, and are included in the error rate computation.

Appendix B: Establishing Performance Requirements

 Copyright © 2005 Collard & Company

 Case Study 1.240

The Process for Setting Requirements

First, review the business critical success factors and business objectives for the
system, to the degree they have been stated. If you have no knowledge of what these
are, you will need to ferret them out.

Second, answer these questions:

1. Where do we need to set goals? Which 5% of the performance envelope is most
worth tracking and caring about? Put another way, which 5% of the system behaviors
are in areas where the performance requirements are worth defining? It helps to
address these questions:

• Which users have priority, in terms of receiving the best performance?

• Which types of work have priority?

• Which system uses are likely to cause the most user dissatisfaction or business
losses if performance is poor?

2. How aggressive do the service levels need to be, i.e., the goals that are user-visible?
(Service levels are goals that are meaningful to users. Internal disk utilization, for
example, is not user-visible.) It helps to address these questions:

• Who are our main competitors? How do customers differentiate among us?
• In comparative evaluation with competitors, in which performance-related areas

do we (a) need to beat the competitors, (b) meet them or (c) do not care as
performance is irrelevant?

• If we are not in a competitive situation, what stated goals and unstated
expectations are there for user productivity?

3. Under what demand conditions do these service levels need to be met?

• Under what expected load volumes do they need to be met?

• With what other concurrent demands (overheads and background noise)
imposed on the shared resources?

Appendix B: Establishing Performance Requirements

 Copyright © 2005 Collard & Company

 Case Study 1.241

• What rates of growth does the system need to accommodate?

4. With what resources (and therefore, at what cost) must the service levels be met?

• What types of resources does the system need to run on? (Do not bother to list
these if they are obvious.)

• What quantities of these resources are normally available to the system?

• What are the desired norms for resource utilization?

o Under typical load?
o Under peak load?

• What are the desired norms for reserve or spare capacity, for each critical

resource?
o Under typical load?
o Under peak load?

• In the trade-offs among the performance characteristics, such as response time

and availability, which ones have high visibility and high risk and thus highest
priority?

Third, document the performance requirements. Use a structure similar to the one in the
earlier example.

Setting Performance Requirements Early

An application's service levels and thus its performance requirements ideally are
defined early, during the requirements definition stage. This is not primarily a
developer's task: users, customers or business managers need to establish what
response times and availability are acceptable. It may be more useful to start by
specifying what is unacceptable. Prior experience, competitors’ actions and
experimenting with prototypes can help with this definition.

Many organizations neglect to performance requirements before starting system
implementation. Goals that are inadequately defined encourage poor design and
coding, wasted efforts and re-work, systems that cannot be tuned and maintained, and
significant risk of operational fiascos.

Appendix B: Establishing Performance Requirements

 Copyright © 2005 Collard & Company

 Case Study 1.242

Mapping from the User’s Perspective to the System Administrator’s

While the primary performance requirements should be visible and meaningful to end
users, the closer these requirements can be mapped to the physical architecture then
the easier and the more objectively the performance can be monitored. If the
operational environment is structured into tiers or layered (e.g., with an application
layer, database layer and a network layer), we should try to define performance
requirements at each layer so that each support team has its own set of performance
targets to aim for. If this is not practical, the performance engineers still need to tune
across all layers.

Including a Performance Focus in the System Design

The architects and developers should be aware of the performance impact of different
design choices, and deliver a blueprint which clearly identifies performance aspects of
the architecture. Important steps to include in the design work:

• Analyze the design for shared and limited resources. For example, a network
connection may be both a shared and a limited resource; a database table is a
shared resource; while threads are a limited resource. These are the resources
that probably will cost the most to fix later if they are not designed correctly.

• Estimate traffic, stored data volumes and load carrying capacities, and use these
to determine if the design is feasible and identify the limitations of the system.

• Require performance predictions from the design.

• Include design experts familiar with the performance aspects of design choices in
the external design reviews. If any significant third party products will be used --
like middleware or database products -- the product vendor should have
performance experts who can validate the design and identify potential
performance problems.

• Assess the system’s scalability both for users and for data/object volumes; the
amount of distribution possible for the application depending on the required level
of messaging between distributed components; and the transaction mechanisms
and modes (pessimistic, optimistic, required locks, durations of transactions and
locks held).

Appendix B: Establishing Performance Requirements

 Copyright © 2005 Collard & Company

 Case Study 1.243

Defining the Workloads

Performance measures like response time and resource utilization have complex
relationships with the workloads, so setting goals without regard to the load is
meaningless. A realistic and reasonably complete definition of the system's workloads is
important for predicting or understanding its performance. A small change in workload
can cause far more variation in the performance of a system than differences in
processor clock speed or random access memory (RAM) size. The workload definition
includes the types and arrival rates of requests to the system, plus any concurrent
background noise (other demands on the same resources). Make sure you include the
work that the system is doing "under the covers."

Bypassing Load Calculations

We can bypass having to calculate the load, however, by setting availability
percentages. Without knowing the average or peak loads, we can set a goal of let’s say
99% system availability or 99.999% (five nines), based on the level of customer service
desired.

Performance Objectives

After defining the workload that the system will have to process, you can choose
performance criteria and set performance objectives based on those criteria. The main
overall performance criteria of computer systems are response time and throughput.

We are primarily interested in four dimensions of resource utilization:
Processor time

Processor cost of the workload
Disk accesses

Rate at which the workload generates disk reads or writes
Network traffic

Number of packets the workload generates and the number of bytes of data
exchanged

Real memory use
Amount of RAM the workload requires

Appendix C: The Initial Impact Assessment

 Copyright © 2005 Collard & Company

 Case Study 1.244

APPENDIX C. THE INITIAL IMPACT ASSESSMENT

Introduction

Performance testing, including measurement in a test lab, evaluation and prediction of
live behavior, is one of the most expensive, system-implementation-delaying and
resource-demanding types of system testing. The resources required include skilled
performance testers, specialized tools and performance testing labs. Performance
improvement projects also can be expensive and time-consuming, and draw on
specialized resources to tune and fix the system.

An initial assessment provides an early filter to help determine where best to deploy the
scarce testing resources. Since many activities can help ensure that the organization
meets a system=s performance goals, the follow-up actions considered in an impact
assessment are broader than just performance testing. They can include predictive
modeling, assessment of the technical feasibility of the system, design reviews for
performance, early component-level and subsystem-level performance testing, system
performance testing (performance measurement while running the system in test
mode), and sizing and capacity planning.

This initial assessment will not attempt to pinpoint what specific kinds of services we
need (e.g., predictive modeling, design reviews, performance testing, or all three), but
will determine if we need to initiate a more substantive performance improvement
project.

The Purpose and Nature of the IIA

The IIA determines whether we need a performance improvement project in response to
a particular system development project or a change, and provides a sense of the
objectives, scope, issues, priority, timing and contact persons for that project. The IIA is
a routine step which is performed early in each system project or when we anticipate a
non-trivial change to a system or to its operating environment. Changes can occur
which impact performance, without any system project being approved and initiated, so
impact assessments are not driven only by the officially designated system
development and maintenance projects. Performance projects can be expensive and
time-consuming, and draw on scarce resources such as performance testers, load tools
and performance testing labs, so this initial assessment provides an early filter which is
important to determining where best to deploy these resources.

Appendix C: The Initial Impact Assessment

 Copyright © 2005 Collard & Company

 Case Study 1.245

The scope of the IIA is broader than performance testing and can include any
performance-related services. This initial assessment does not necessarily attempt to
pinpoint what kinds of services we need (e.g., predictive modeling, design for
performance reviews, performance testing, or all three), but will determine whether a
more in-depth performance improvement project should be initiated.

Types of Impact Assessment

The impact assessment can take two forms:

 (1) The situation where there is an existing infrastructure. Here the purpose of the IIA is
to make an initial determination of the likely impact on this infrastructure, and whether
the risks justify performance testing. For example, let’s say that we are introducing a
new application system into a complex environment. The impact assessment is
important to both the success of the new application and the stability of the
infrastructure, including its ability to support adequately the other applications using the
same infrastructure.

The situation where there is no existing infrastructure. Here the purpose of the IIA is to
determine what degree we need performance testing, if any, and to support the capacity
planning for the new infrastructure for the system, determine if the system performance
is adequate, and guide the system tuning to fit the environment.

The Scope of the IIA

Since many activities can help ensure they meet system performance goals, the
activities considered in the IIA are broader than just performance measurement. They
include:

o Predictive modeling of the system performance.

o Assessment or re-assessment of the technical feasibility of the system, or the
marketing feasibility for a commercial product. (For example, is it realistic for the product
to beat the competition both on price -- which depends on the resources used -- and on
performance?)

o Design reviews for performance, where we examine the behavior and
performance characteristics of the system in walkthroughs to help identify likely
bottlenecks.

Appendix C: The Initial Impact Assessment

 Copyright © 2005 Collard & Company

 Case Study 1.246

o Design reviews for testability, leading to recommendations of features and hooks
to build into a system to aid its performance measurement.

o Early component-level and subsystem-level performance testing, prior to the
testing of the fully integrated system, which occurs late in most projects, after the design
is locked in, and giving little time to react to surprises.

o Decisions on whether to measure the situation prior to introducing a change, in
order to later develop a before-and-after comparison. This “before” picture can include
the number of users, size of network traffic, application and database work load
demands, current levels of resource utilization and the current system performance.

o System performance testing (performance measurement while running the
system in test mode).

o Early identification of the tools, facilities and skills which we need to acquire or
build, in order to prepare the test environment for the anticipated measurements.

o Sizing and capacity planning.

Prioritizing the Performance Test Needs

Despite their best intentions, most performance test teams can’t do everything. The
number of system projects and events where we could test performance is often
overwhelming. The test team does not have all the equipment and tools needed for this
testing even if we do have the time. In those unusual situations where there are no
resource limitations, performance testers still need to focus their efforts in order to be
effective. Without the right focus, the flow of events could distract the testers into
numerous performance test efforts which with hindsight contribute little to the
organization.

Which situations logically should receive the highest priorities for performance testing?
The most likely candidates fall into these four categories:

(1) Resource-intensive systems (or subsystems, features, transactions or work
demands).

 o Systems in this category include one which place an intense demand on
input/output facilities, are computationally intensive (processor bound), use unusually
large amounts of memory or hard disk storage capacity, transfer large files or place a

Appendix C: The Initial Impact Assessment

 Copyright © 2005 Collard & Company

 Case Study 1.247

heavy load on network bandwidth.

 o For example, applications like videoconferencing and geographical
information systems (GIS) have a name for being resource hogs – they typically place
heavy demands on network bandwidth, and do enough file compression /
decompression and perhaps also encryption / decoding to be computationally intensive
too.

 o As another example, consider an infrastructure which contains a mix of
mainframes, database servers, personal computers, etc. We know that the existing
work load places little stress on the mainframes, which have lots of spare capacity, but
that the load heavily utilizes the database servers. A new system which uses the
mainframes but not the database servers is unlikely to be resource intensive in this
environment, and so would receive a low priority. On the other hand, if we re-designed
this same application to move it off the mainframes and on to the database servers, it
could shoot to the head of the line for performance testing.

(2) Timing-critical systems (or subsystems, features, etc.).

 o These include real-time system where it must meet hard timing deadlines
in life-dependent situations, such as an aircraft’s flight control system.

 o A more down-to-earth example is an executive information system (EIS),
where queries from people like the CEO and CFO need speedy responses. Imagine the
CEO taps in a query during a board meeting to answer a board member’s impatient
demand. The system administrator who cares about his job longevity does not want this
query to sit in a queue on the network somewhere, stuck behind a huge print job.

 o The category can also include highly visible systems or user groups, such
as the home page of a Web site where many visitors download time is considered
critical to success.

(3) Frequently used systems (or subsystems, features, etc.).

 o This category high-volume network transactions, and the frequently visited
pages in a Web site.

 o For example, e-mail is ubiquitous. Each individual message may not be
resource intensive in itself, and the timing is not super critical, but a swarm of messages
can bring a network or a server to a crawl.

Appendix C: The Initial Impact Assessment

 Copyright © 2005 Collard & Company

 Case Study 1.248

 o As another example, I saw a situation where a new hypertext link was
added to an existing Web page. The change seemed innocuous enough, but it brought
the hosting system to its knees. It turns out that the new link was highly popular –
everybody was clicking on it.

(4) Urgent changes or events. In the ideal world, project deadline dates are not a
factor in prioritization. We would strictly base the amount of attention provided in
performance testing on the first three factors above (resource-intensive, timing-critical,
high-frequency utilization). Sometimes, though, a project which scores lower on these
three factors takes priority, because of the urgency of its deadlines.

What Situations Need to be Assessed?

Prioritization is based on risk – where is the biggest risk of performance issues?
Performance risks include response times which are too slow, inability to handle the
number of users (throughput), inability to handle heavy loads, and inefficient use of
expensive or scarce resources. Depending on how broadly we define the term
“performance issues”, related risks also can include inflexibility of the system to scale up
(or down), difficulty in determining and allocating the optimal resources to run the
system, difficulty in tuning and managing the system in operation as the work load mix
changes, and an inability to pinpoint bottlenecks.

Not just new system projects introduce these risks -- any change can impact the
situation. This means that every known change which is likely to impact performance
needs to undergo a risk assessment and prioritization. Since there is a large volume of
changes, this initial assessment and prioritization has to be brief and simple. Changes
which may carry performance risks include the introduction of a new system or product,
modification to an existing system, modification to the infrastructure used to support the
system, such as the upgrade to a new version of an operating system, or a change in
the user community or in the mix of demands that the users place on the system.

This means that the performance testers need access to information about a wide
variety of changes – new product feasibility studies, change requests for existing
systems, planned upgrades in the technical environment, and likely changes in the user
community. We cannot plan performance testing for something we do not know about.

Prioritizing Within Systems

We assess the risk and prioritize not only entire systems, but also within them to help

Appendix C: The Initial Impact Assessment

 Copyright © 2005 Collard & Company

 Case Study 1.249

focus the testing effort for a particular system. For example, consider a new system
which uses a mix of mainframes, database servers, Web servers, local client personal
computers and wireless technology, where the performance risk is high with wireless
but low with mainframes. The wireless subsystem will have high priority, whereas the
mainframe portion of the system may be exempted from performance testing.

In another situation, we might discriminate and prioritize based on the type of user. For
example, consider a system with two distinct user communities: senior executives and
lowly clerks. Rightly or wrongly, we are very concerned about the quality of service for
the executives, but not for the clerks. If the system is slow, the clerks simply have to
wait. We would assign a high priority to measuring the executive’s likely performance.
(Of course, to obtain a realistic sense of the executive’s performance, we would have to
ensure that the background noise during testing is representative of reality. This
background noise includes the on-going hum of daily clerical activity, so we could
measure the low-priority clerical response times fairly easily as a by-product of
measuring the executives’ performance.)

In a third situation, we could prioritize the test efforts within a system based on the
events or transactions the system receives. It is not unusual for the most popular 10%
of all the types of transactions to account for 90% of the transaction volume, or the most
resource-intensive 10% of events to gobble up 90% of the system resources. Unless we
need unusually precise measurements of system performance, we can safely ignore the
90% of all transactions which consume only 10% of the resources.

The Prioritization Process

Since change is way of life, we need to periodically re-assess the overall situation and
re–visit the priorities. This re-assessment is usually done monthly, and may be triggered
more frequently by new information. The performance test team can coordinate the
prioritization activity, if there is a separate team. It is done in conjunction with the
system owners or custodians, such as development project leaders or business unit
managers, and in conjunction with the resource suppliers, such as network
administrators or data center capacity planners.

In the prioritization process, the four risk factors which were mentioned earlier
(resource-intensive, timing-critical, high frequency, and deadline urgency) are each
subjectively ranked on a scale of high, moderate or low. Quadruple-threat activities are
the ones which score high on all four factors, and these receive the highest priority and
the most attention. Minimal-threat activities score low on all four factors, and these will
receive no attention. If a project or event scores one high evaluation among the first

Appendix C: The Initial Impact Assessment

 Copyright © 2005 Collard & Company

 Case Study 1.250

three factors (resource-intensive, timing-critical, and high frequency), then it should
receive some attention from the performance testers. At minimum, we can track the
project or event to ascertain whether and when it turns into a multi-threat activity.

When to Conduct the IIA

When should we undertake an impact assessment and prioritization as described
above, and when can we kick off the performance testing project if it is justified? The
answer is that we want to select projects and events (such as non-trivial changes in
work load) for performance testing as early as we can. For a new system project, we
usually have enough information to assess its likely performance impact by the end of
the system requirements definition, and definitely by the time the high-level system
design is done. For an anticipated change to an existing system (such as the expansion
of the number of system users), ideally the change request will provide enough
information to be able to prioritize. As system projects progress and more becomes
known about them, we typically want to fine -tune the performance testing objectives
and strategy. This is part of the periodic re-assessment mentioned earlier.

Potential Funding Issues

Perhaps the budget should not cloud the technical issues, but resource constraints are
ever present, and the availability of funding can be an issue in initiating performance
testing projects. For example, is the test effort going be funded from a centralized
budget which the performance test team is awarded, or funded out of the system
development budget, or underwritten by the user community?

Since the source of funding usually influences who gets to call the shots, it can have an
impact on the project objectives. If the performance team is funded from the individual
budget which is “owned” by each project, the analysis tends to be project-specific.
(“What’s the response time for this feature in our system?”) If instead the team is funded
from a central budget, the analysis tends to be more enterprise-wide. (“What’s the
impact of this feature on the existing infrastructure and on the users of other co-resident
systems?”)

Appendix D: Roles and Responsibilities

 Copyright © 2005 Collard & Company

 Case Study 1.251

APPENDIX D. ROLES AND RESPONSIBILITIES

Overview

This appendix discusses who’s involved in performance testing, and their perspectives
and motivations. In a typical enterprise, which is not a vendor or supplier but is primarily
a user of technical products and services provided by others, the people involved in
performance management include (a) the senior managers, (b) the people who run the
operations such as system administrators, (c) the people who monitor the operations
such as auditors and capacity planners, (d) the system architects, designers and
developers, (e) the testers and (f) the users.

The Role of the CIO and Senior Managers

The business managers are interested in providing operational continuity, improving
their competitive position and capitalizing on new opportunities in areas like e-
commerce. Most senior managers willingly invest in new technology for promising
opportunities and want the information to make smart decisions. Companies can waste
resources if they cannot evaluate alternatives correctly, but measuring returns on e-
commerce projects can be daunting. Predicting customer behavior is difficult, because
using the Web to do business is still new. Benefits and costs are difficult to measure,
and the rapid pace of change does not help, as it means there is little comparable prior
experience. In addition, the right choices of metrics are different for each company,
because the strategies, structures, and systems are different. Understanding the
business goals comes first, since this understanding drives the choices of metrics.

Understanding the motivations of these managers improves our chances of winning
their support. Which of these motivate your CIO and senior managers, and which are
their highest priorities?

• Improve ROI.
• Reduce operating costs without imperiling service.
• Save money and right-sizing networks and infrastructure.
• Buy what you need, by evaluating vendors’ claims before you commit.
• Improve user satisfaction.
• Win by providing better service to the business functions.
• Quicken delivery and improve responsiveness to users’ requests.
• Reduce risk.

Appendix D: Roles and Responsibilities

 Copyright © 2005 Collard & Company

 Case Study 1.252

• Gain confidence that security controls work and are adequate.
• Know the impact of changes before they are introduced.
• Check interoperability and that the infrastructure is seamlessly integrated.
• Understand better where the stress points, weaknesses and vulnerabilities are

located.
• Ensure the disaster recovery plans are “not a disaster”.
• Provide leadership.
• Lead the organization to capitalize on technology-based opportunities.
• Develop policies and goals for performance and reliability.
• Negotiate and monitor compliance with SLAs.

The Role of System & Network Administrators

Which of these motivate your system and network administrators?

• Maintain operational integrity.
o Keep everything running smoothly – applications, servers, firewalls, e-

mail, printers, phones, networks, etc.
o Satisfy the users: meet the service level agreements (SLAs).
o Ensure resource utilization is cost-effective.
o Comply with policies, standards and operating procedures.

• Manage change.

o Implement application changes safely and responsively.
o Check infrastructure upgrades and configuration changes in the safety of

the test lab, before deployment.

• Improve the levels of service provided.
o Tune the infrastructure to improve performance and reliability.
o Increase security.
o Improve resource utilization.
o Provide advice to users and other technical specialists – e.g., DBAs.
o Tune systems, databases and networks.
o Keep up to date with technologies, methods and tools.
o Troubleshoot and resolve problems.
o Manage vendor relationships.
o Monitor and report the quality of service that is provided to users.
o Perform capacity planning.

Appendix D: Roles and Responsibilities

 Copyright © 2005 Collard & Company

 Case Study 1.253

The Role of the Testers

• Validate that systems and changes work as planned.
• Set up large-scale tests: simulate the real world in the test lab.
• Provide better test coverage.
• Re-test quickly and cheaply after changes.
• Find discrepancies (bugs).
• Test at and beyond the breaking point.
• Improve the ratio of bugs found in testing vs. live operation.
• Provide more complete and timely information to decision makers about the state

of a system, for example, about its readiness for release to live operation.

The Performance Test Team

Some reasons why performance testing is often not done well is the testers’ lack of in-
depth expertise in the factors that affect performance, the testers’ lack of suitable
equipment for performance testing, and the testers’ demanding work load to get other
types of testing completed.

For all of these reasons, an interdisciplinary team should tackle the performance test
planning composed of experts in data center operations, vendor equipment technical
specialists, network administrators, together with the testers. Other specialists such as
application developers and database administrators will need to be available, as
consultants to the performance test team.

The experts need to share information and cross-educate each other in order to identify
the performance test goals, issues and approach. They will be involved in designing
cross-platform performance test cases. The experts can also identify the equipment
needed for performance testing and facilitate this equipment being made available for
the testing.

A Caution

These people often are poor performance testers: performance engineers and capacity
planners, architects and developers, project managers and system developers, and
operations specialists like system administrators and network engineers. Reasons: bias
and over-emphasis on topics within their comfort zones; lack of understanding and
under-valuing of the testers’ role; failure to know what they don’t know; inability to see
from an enterprise perspective vs. a narrow one; inability to escape local politics.

Appendix E: Performance and Robustness Testing Methods

 Copyright © 2005 Collard & Company

 Case Study 1.254

APPENDIX E. PERFORMANCE AND ROBUSTNESS TESTING METHODS

Approaches to Testing

There are many variations of testing within the broad framework of performance testing.
Knowing these variations is important, because selecting the right ones for a particular
situation is essential for developing an effective test strategy. This section names and
explains the main variations. There is some overlap in the following types of testing.

Many projects have both performance and robustness testing goals, and sometimes it is
difficult (and pointless) to differentiate between these two types of goals, especially in
the area of stress testing. So in the following list, I have not tried to distinguish the
performance testing methods from the robustness testing ones; I have mingled them
together. There is some overlap among the various types of testing on this list, and we
may employ several of them within one test project.

In addition, there is no universal and consistent set of terminology, and many
organizations have their own terms such as “work load testing” and “sweet spot testing”
(both of which are terms used inside divisions of Hewlett-Packard). The way I am using
terms in this book is the mainstream, the common vernacular, to the extent that there is
a common term being used.

The main types of performance testing and measurement are:

1.0 Testing which is driven by what we want to measure.
 1.1 Response time testing
 1.2 Throughput testing
 1.3 Availability testing
 1.4 Measurement of resource utilization
 1.5 Capacity testing

1.6 Measurement of delays (latency)
1.7 Measurement of losses in networks

 1.8 Error rate measurement

2.0 Testing which is based on the source or type of the load.
2.1 Usage-based testing
2.2 Standard benchmark testing
2.3 Load variation testing

Appendix E: Performance and Robustness Testing Methods

 Copyright © 2005 Collard & Company

 Case Study 1.255

 2.4 Ramp-up testing
 2.5 Component-specific testing
 2.6 Calibration testing

3.0 Testing which seeks to stress the system or find its limits.
3.1 Scalability testing
3.2 Bottleneck identification and problem isolation testing
3.3 Duration or endurance testing
3.4 Hot spot testing
3.5 Spike and bounce testing
3.6 Breakpoint testing
3.7 Rendezvous testing

 3.8 Feature interaction / interference testing
 3.9 Deadlock testing
 3.10 Degraded mode of operation testing

3.11 Synchronization testing
3.12 User scenario, bad day and soap opera testing

 3.13 Disaster recovery testing
 3.14 Risk-based testing
 3.15 Hazard or threat identification
 3.16 Environmental testing
 3.17 Compatibility and configuration testing

4.0 Testing which focuses on the impact of changes.
 4.1 System change impact assessment
 4.2 Infrastructure impact assessment

4.3 Baseline testing
4.4 Volume testing
4.5 Parallel testing

 4.6 Live patch and change testing
 4.7 Extreme configuration testing

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.256

APPENDIX F: CHALLENGES IN PERFORMANCE AND ROBUSTNESS TESTING

Why is Performance Testing Difficult?

Performance testing is dead simple. All it requires is the right mix of demands (work
load) to use in testing, the right test environment, the right tools and techniques, on-
target insights into what to look for and where to look; an adroitness in handling
deadline pressures, the ability to work with sometimes uncooperative architects,
developers, system administrators and vendors, the ability to live with a great deal of
unknowns and uncertainties, the right interpretation of the measurements, a way of
translating results from the test lab into valid predictions about performance in the live
operating environment, a knack for pinpointing and isolating bottlenecks, and inspiration
and good luck in resolving the performance problems which the testing uncovers. Good
luck.

Frankly, performance testing can be a real pain. It often is not done well, and more often
it is not done at all. With more frequency than many testers would like to admit, the
measured performance in the test lab bears virtually no discernable relationship to the
actual system performance in live operation.

Common Issues of the Testers

• Frequently, the performance goals are vague.

• Managers often lack awareness and understanding of what performance and

robustness testers do – have to re-justify.

• Poor cooperation from developers and system administrators in resolving

problems.

• Performance, robustness and reliability are often afterthoughts in design and in

testing.

• Often must persevere with tool limitations and under-funded test labs.

• Expected to catch all the significant bugs, a sobering responsibility.

• Typically labor under deadline pressures.

(This is not a complete list.)

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.257

There are several difficulties listed below which can complicate a performance test:

A. Background Knowledge

A1. Understanding of the System and its Context

To competently assess whether a system’s performance and robustness is acceptable,
we need to understand its behavior. The desired knowledge base includes several
areas which no one person may know well – (a) the system’s functions, (b) its internal
architecture, (c) how it is going to be used, (d) the technical environment or support
infrastructure in which it will operate, (e) the perceived risks and vulnerabilities, and (f)
the managements’ or clients’ expectations for performance and robustness.

A2. Slope of the Learning Curve

It is hard to test effectively without sufficient time to prepare. Although the performance
and robustness testing may not happen until late in a project, it is important to involve
the test team early so that they have time to climb the learning curve and thoroughly
understand the system, its context and issues. The testers have enough time to select
and learn the right tools, and develop automated test cases – a notoriously lengthy
process, and acquire the most suitable test equipment. If they become involved early,
the testers also can play an important preventive role in avoiding later surprises. (See
the section entitled: “Avoiding Surprises”.)

A3. Availability of a System Model

Unless a system is extremely simple, we cannot evaluate its performance and
robustness without a model or at least a mental map of how it works internally. In other
words, we generally cannot test only from a black-box perspective but need to “look
under the hood”. For example, complex systems usually have overwhelming number of
factors which could be pertinent to system performance and robustness, and which we
could monitor Without a sense of what’s important – what to look for, we will collect
large volumes of meaningless numbers.

If a cohesive, comprehensible model already has been developed by the system
designers, then we can utilize this model. The problem often is the adequacy of the
models available – it is fair to say that many designers of complex systems do not
understand the intricacies of how their systems actually work.

A4. The System Scope and Boundaries

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.258

We have to determine exactly what “it” is (i.e., the system we are testing). If a manager
gives us the directive: “Test the system’s performance”, we may have to respond by
asking: “Just what do we mean by the term ‘the system’?” At first hearing, this point may
sound dense, which it’s not.

Sometimes there is a vagueness about what a testable version of a system includes. If
the system is part of a greater integrated super-system, can we somehow isolate that
system for testing, or does it make sense only to test the whole super-system?

A system can exist in several versions concurrently. Within one version, different
subsets of the features will be enabled at different points in time, while other features
are unavailable at that time. The system might be tuned or optimized for this particular
test, or deliberately not.

Many systems are designed to incorporate an indefinite number of third-party plug-ins,
some of which have not been invented as yet. Third-party software plug-ins include
network drivers, middleware and many other types of software. These drivers may not
even be needed by the “system” we are testing, but instead are used by other
applications which normally run in the background. We’d need to determine which third-
party drivers to enable and use during testing, which to enable but not use, and which to
not enable.

Another issue is whether the system should be tuned and optimized for the particular
test load and environment used in testing. The test results may be mis-leading (too
good), and the system sub-optimized for other different loads and environments.

B. The Testware

B1. Adequacy of the Test Facilities

One issue is what facilities we can use to run the performance and robustness test.
Ideally, the environment for testing will fully mirror the live operational environment, but
this can be extremely expensive or infeasible. Or we could perform the performance test
in the live environment -- which risks slowing all the other users to a crawl, or worse,
interfering with and corrupting their work.

B2. Adequacy of the Test Work Loads

Another issue is how to select or develop the work loads, the mixes of demands to be
placed on the system during performance measurement.

B3. The Overhead and Logistics of Testing the System

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.259

Sometimes the day-by-day mechanics of testing are all-consuming. We are absorbed
by setting up the test environment, developing loads, writing and debugging automated
test cases, running ad nursing along the test, etc. We have no time or energy to think,
strategize, question what we are doing and why, or consider how to improve our testing
effectiveness.

An example is the issue of how to place the load on the system which we are testing.
Should the test team use an automated load test tool? (These tools are expensive and
can be tricky to use.) Or can the test team instead round up a hundred volunteers to
bang away on the keyboards, in order to stress the system while we measure its
performance? The “hundred volunteers” approach carries costs of its own.

Another example: should we run a duration test for four hours? Or eight hours? 24? 72?
If we are busy with the mechanics of just getting the test to run, we don’t have time to
think through the trade-offs among these alternatives.

B4. Unanticipated Glitches in the Test Environment

The occurrence of glitches is high in many test labs, especially when different
equipment is patched together or the testers are not very familiar with the equipment.

The glitches include mis-connected equipment, software incompatibilities, operator
errors and even a moth stuck between two electrical contacts. (This famous moth,
which is now on display in the Smithsonian museum, originated the use of the term
“bug” for a hardware or software defect.)

C. The Live and Test Environments

C1. Environment-Specific Issues

Every system exists within an ecosystem, and cannot function or have much meaning
independently. Performance and robustness testing are very environment-specific,
perhaps more so than other types of testing. These types of testing have a very different
flavor on an IBM batch mainframe than in an Internet service provider’s packet-switched
network or for a video game.

There often are environmental complications in performance and especially in load and
stress testing, and resolving these complications requires considerable expertise in the
particular technical domain (e.g., Unix system administration). Planning, configuring,
running the performance test and interpreting the results often requires the involvement
of people who are highly knowledgeable about the specific environment we are testing.

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.260

These people tend to be scarce and busy.

C2. Mixed Environments

Environment-specific skills are not easily interchangeable. A person who is highly
knowledgeable about Unix may know little about Macintosh, and vice versa. A database
administrator does not know how to run a network except in her home office, and a
network engineer can’t manage the corporate data warehouse.

However, most organization’s operational environments mix multiple vendors, multiple
technologies, multiple operating systems, multiple databases, multiple network
protocols, etc.

This means the testers may be dependent on several different technical specialists from
different organizations, and the effort to coordinate their activities in a complex
environment can be considerable.

C3. The Impact of New and Improved Technologies

The rapid rate of innovation in software, hardware, networks and databases means an
on-going stream of opportunities to improve system performance and robustness, and
frequent upgrades to systems and their environments.

The NGT (next great thing) brings enthusiasm and sometimes a misplaced euphoria.
The new-fangled whatsit will run so fast that all our performance problems will
disappear, and in our confidence we believe there’s no need for performance testing.
Hindsight tells us that the NGT is rarely a panacea, but in the enthusiasm of the
moment it is easy to overlook this.

We often incorporate new technologies, such as wireless and security devices based on
human physiology, into existing infrastructures, where they can interact in unforeseen
ways with what’s already there.

The continuous stream of opportunities to upgrade means that environments are not
static and may not stay stable for very long. Every “opportunity” has performance and
robustness implications and thus triggers a never-ending demand for re-testing
performance, robustness and stability.

C4. Large Numbers of Testable Configurations

Today, many application systems are highly configurable. So are their support software,
hardware platforms, databases and networks.

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.261

When we consider all the different possible combinations of the internal switch settings
in an application, all of which potentially can effect the system’s performance and
robustness, and all the different combinations of hardware platforms, network topologies
and support software, the number of ways the system can be used is astronomical.

The system and environment configuration settings may not be easy to observe from
the outside, and the configuration may change during the flow of work, as events
change the switch settings, without the testers being aware of it.

D. The Testing Tools

D.1 Expense and Complexity of the Tools

The tool acquisition cost, if a tester uses a commercially available tool, is only the tip of
the iceberg. The total cost of ownership (TCO) is much higher, sometimes by a factor of
a hundred. The overhead to develop and maintain the automated test cases can be
horrendous.

Many testing tools are rich in capability but hard to master and utilize well.

The tools often complicate the performance and especially the load and stress testing.
Automated tools can time-out because response times during testing exceed the
defaults to which the tools have been set (see the discussion of load testing tools later
in this book). Or the load test may fail because of the heavy load and crash the test
platform, wiping out the captured measurements and suspending the test until it is
manually re-started.

Many organizations must build their own testing tools because nothing is commercially
available which will meet their needs, and the expense can become extremely high.
Most large vendors build their own tools, and it is not uncommon in firms like Cisco to
find full-time teams of dozens of test automation specialists who build and maintain
tools, but do not test.

D.2 Tool Limitations

Performance, load and stress test projects are very tool-dependent: most of the work
cannot be done manually. In many projects, though, there are many things that the
available tools will not do or not do well, leading to compromises and a need to make
assumptions. And the tool users may not know enough about a tool to realize what
these compromises and assumptions are.

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.262

Many of the tools are quirky (buggy), not easy to use and not particularly well supported
by the tool vendors, despite the high fees they often charge.

D.3 Mis-Use of Tools

Testers can unknowingly mis-use load testing tools to apply loads in ways which are not
representative of reality. These test bugs happen much more often than many testers
realize. See, for example, the later discussions in the sections entitled: “The Metronome
Effect” and “Limitations and Common Mis-Uses of Tools”.

E. The Test Methods

E.1 Testability

Testers are often frustrated by their inability to observe the behavior of a system. There
may be an internal hidden switch or counter whose value is transient – here one
millisecond and gone the next – but with no way for the testers to access this switch
before its value changes.

Most systems are designed and built with little attention to their testability. See the later
discussion in the section entitled: “Designing for Testability”.

E.2 Deciding What to Measure

We may have a strong model and a good understanding of a system and its
environment, but still not know what to look for, especially before we have had much
experience with the system.

Consider what it takes to measure the response time for a Web page to download. At
first hearing, it sounds simple – one test case can do the job. Then we start to consider
all the factors which might influence response time (browser, connection speed, time of
day, number of other concurrent visitors to the Web site, etc.) The number of
measurements needed, in order to obtain a realistic sense of the delays experienced by
users, increases dramatically.

Let’s now say that we are not just interested in the response, but in the relationship
between response time and the amount of memory allocated to process download
requests on the Web server. The number of influencing factors to consider increases
again.

E.3 Lack of Repeatability

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.263

The fundamental laws of physics seem to be suspended in performance measurement.
If we re-run a performance test case under exactly the same conditions as before, we
expect to get exactly the same performance measurements. To our surprise, though,
the same behavior does not happen again. Factors have changed which we cannot see
or control, but which affect the system’s performance.

This means we can’t simply measure something once and be done with it, but we may
have to take a sample of measurements (which can be sizeable). Then we need to
decide which value to use: the simple average of all data points, the average after
cleansing the collected data points of dubious values, the mode or the median, etc.

E.4 Interpretation of Results

Sometimes it is not clear how the performance data which the performance testing team
captures will actually be useful. The data which we do capture may not be sufficient to
develop clear and unambiguous answers to the managers’ real-world business
questions, such as: “How will this system improve the productivity of my business unit?”

E.5 Problem Isolation

When we test an application, we cannot run it stand-alone. It needs to be integrated and
tested with support software such as an operating system (OS), not to mention the
supporting hardware, networks and databases. The question is whether we can isolate
the performance of the application from that of OS, DBMS or other support software, or
from the unique interaction of that particular OS, DBMS and application. Another
question is whether we even want to try to isolate the problem. And if so, what level of
effort is justified – the trade-off of testers trying to pinpoint a problem versus turning it
over to experts.

E.6 Validity and Credibility of the Results

Many testers’ predictions of performance and robustness do not match the users’ actual
experience in live operation. Often, this mis-match is caused an accumulation of myriad
little inaccuracies between the test lab and the real world. The testers are unaware of
many of the inaccuracies. Where the difference is known, it may be a deliberate
compromise of reality which is needed to make the testing feasible. The process of
adjusting the lab findings to take into account the myriad differences is not well
understood.

F. Project Management

F.1 Late Occurrence in Projects

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.264

In addition, performance testing typically happens towards the end of projects, only after
we have tested and fixed the basic system functionality. As such, we conduct the
performance testing under stress conditions (no pun intended), when the test team is
overworked and faces deadline pressures to get the system delivered.

F.2 Testing without Pre-defined Exit Criteria

Performance measurement is often open-ended, not a one-time activity. There are an
indefinite number of iterations of tuning the system in response to the reported
performance, then re-measuring to see what the cause-and-effect impact of the tuning
is on the system performance. Budget and schedule overruns are common on
performance testing projects.

F.3 “Trivial” Changes which have Widespread Consequences

Seemingly tiny and unnoticed changes can have a major impact on system
performance and reliability. For example, I saw a situation where a Web site
administrator added a new link to his Web site. The new link allowed the user
community to access a popular external Web site containing trendy gossip and jokes. A
trickle of use of the new link quickly became a flood and the entire Intranet of the
organization slowed. (The link was hastily removed.) The flow of these changes is
never-ending.

F.4 Specialized Expertise Required

Performance and robustness testing can demand specialized knowledge of the network,
database, operating system, hardware and performance testing tools, which the feature
testers do not have. This is not a complete list: we could mention more complications of
performance testing too.

F.5 Coordination of Specialists

Because of the narrow, deep levels of technical expertise available, performance testers
can find themselves playing the role of general contractor in house construction. The
testers provide a de facto center, an information clearing house, and they coordinate the
tuning and debugging activities of different topical experts. The disparate specialists
often have different perspectives, priorities and biases. Working with them can be like
herding cats.

Without coordination, it is easy to sub-optimize. The Unix specialists will naturally tune
and optimize the parts of a mixed Unix-Windows environment which they can see and

Appendix F: Challenges in Performance and Robustness Testing

 Copyright © 2005 Collard & Company

 Case Study 1.265

understand, and the Windows system administrators (to whom Unix is a mystery) will do
the same thing for the Windows portions, but they may work at cross purposes. In
house construction, everyone has heard stories like the one where an electrician
unknowingly drills a hole in a wall – and through a hidden pipe which a plumber just
installed. Sometimes this coordination role is not one the testers anticipated, so no
overhead has been factored into the schedule and budget to get it done.

F.6 Lack of Candor

Management must encourage lower level team members to speak out, be critical.

F.7 Unexamined Information
Testers must not accept information uncritically and probe beyond the information
provided.

The people who present the architecture must be those familiar with it, the people who
present the operational profiles must familiar with how the users really work, and so on..

F.8 Lack of Budget and Time
Realistic budget and time needs to be allocated in the early planning stages.

F.9 Lack of Buy-In

The organization needs to understand the importance of testing performance.

On the other hand, expectations need to be realistic.

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.266

APPENDIX G. THE TEST AUTOMATION FRAMEWORK

What is an Automation Framework?

The automation framework is the blueprint for the coordinated set of test tools,
equipment, procedures and support people needed to make test automation effective
and efficient. In the words of Bob Poston: ANewcomers to automated software testing
often think that all the automation they need is built into a capture-replay tool that runs
test cases. As people move further into automated software testing, however, they see
that test case execution takes care of only one small part of their work. Test cases must
be designed and created before they can be run and results captured. Additionally, test
cases should be evaluated after they are run, so the tester and the developer can
confirm that the software functioned or failed to function as expected.@

Many automated test groups do not consciously design and manage the framework, but
by default allow a disparate collection of testing tools and processes to evolve over
time. The result, like any informally designed and patched-together system, is a hodge-
podge of partially effective tools which are not particularly well integrated together. In
addition, the automation of test case creation and evaluation are not widely understood
and practiced.

Today, many tool vendors provide useful solutions for individual parts of the framework,
but no one tool vendor has a good overall, integrated solution, despite the vendors=
claims, except for the simplest and most straightforward test situations. This means it is
up to the test organization to develop their own framework, and the select and fit
vendors= products into the framework, or alternatively build their own, or most likely
have a mix of vendor-provided and home-built tools.

Why do I need an Automation Framework?

With a framework:

o The various test facilities can be smoothly coordinated to work together.

- The test tools can be coordinated to work with the test facilities.
- The test tools, test support tools and test support processes can be

coordinated.

o People understand their responsibilities for automated testing and automation

support.

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.267

Without an appropriate framework:

o The integration of the automated testing with the testing support tools tends to be

cumbersome and inefficient.

o The testing efforts tend to be disorganized, with a jumbled heap of inconsistent

and redundant test cases and processes.

o Everyone creates his or her own way of automating their testing efforts.

All too often, a test automation project is organized like the worst programming project
you ever saw. A few busy test professionals are given a copy of an automated testing
tool and, with no training, told to Ago do it@ (write some automated test cases). The
result inevitably is a disorganized, uncoordinated jumble of unmaintainable automated
test cases.

While organizing the automation framework can sound like bureaucracy, overhead and
delay in an automated testing effort, it is an important first step in getting organized for
automation.

Components of the Framework

The framework for automation includes these six components:

(1) The System(s) to be Tested.

(2) The Test Equipment and Facilities.

- Diagnostic Utilities.
- Configuration Management.
- Processes for Loading Systems to be Tested.

(3) The Test Case Library

- Data Base Organization of this Library.
- Guidelines for the Use of the Library.
- Maintenance Procedures for the Library.

(4) Automated Testing Practices and Procedures.

- How to Use the Test Tools and Test Case Libraries.
- How to Write and Maintain Automated Test Cases, etc.

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.268

(5) The Tools.

- Automated Testing Tools.
- Support Tools.
- Integration of Automated Testing with the Support Tools (e.g.,

requirements tracing, defect tracking, management reporting).

(6) The Peopleware (Support Roles for Automation).

This section provides brief descriptions of the tools shown in the boxes on the preceding
diagrams. Most of these tools are described in more depth later, along with examples of
commercially available tools.

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.269

A. Overview of the Automation Framework

This diagram shows the overall context of automated testing.

<<See the separate Test Automation Framework handout for diagram pages to insert
here.>>

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.270

B. Front-End Test Tools

<<See separate handout for diagram pages to insert here.>>

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.271

C. Test Environment Management Tools

<<See separate handout for diagram pages to insert here.>>

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.272

D. Back-End Test Tools

<<See separate handout for diagram pages to insert here.>>

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.273

The Role of the Framework Builders

The builders of the automation framework should spend much of their time up front:
listening to the clients (i.e., the testers who will using the automated test facilities),
understanding their needs and how they test systems, scrutinizing the feasibility of
automation alternatives, forming a practical vision of the automation framework, and
creating a blueprint.

The framework builders are usually also responsible for implementing the framework,
not just designing it, i.e., by building or installing facilities according to the blueprint for
automated testing. The construction phase of the framework development can include
in-depth tool evaluations, integrating tools together from different sources, converting
test data bases, etc.

The effort involved in building an effective framework should not be underestimated.
Typically, the builders will find themselves involved in many activities which require both
time and skill. The framework builders:

o Focus on the requirements of those who will use the automated testing facilities.

o Need to understand the types of systems being tested, the scope of the test

automation, the user-testers= main testing issues, requirements, and
expectations. The architects also study the context of the automation - the entire
enterprise of which the test organization is a part.

o Must thoroughly understand and document the areas (domains) for which the

framework will be built and to learn the testers= requirements in detail.

o Advocate an organized test environment. (This is an important part of the

framework builder=s role).

o Need to bring an extensive knowledge of the fielding of testing, to be able to

design the right framework and select intelligently from an unlimited spectrum of
choices.

o Outline the desired behaviors and capabilities of the overall framework.

o Prepare architectural-level designs depicting the domain characteristics and

technology structure.

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.274

o Expand the detail and refine the framework model to converge on the final
 design.

o Consider the look and feel of the system - the most appropriate style for the user

interface.

o Build prototypes for selected components of the test automation framework, if

they are needed.

o Perform risk assessments on the framework.

o Develop guidelines and handbooks for users of the automated test environment.

o Specify the tools and methodologies, which are needed as components of the

framework.

o Participate in testing and acceptance reviews of the automated test environment,

to the extent the clients (the testers) desire.

o Assist the users (the testers) with the migration to the new automated testing

environment.

o May be involved with the training of the users of the automated test environment,

as needed.

The Existing Infrastructure

Automation cannot be done successfully in isolation. There is a broad and rich diversity
of corporate cultures, software engineering practices, and existing test facilities. Test
automation needs to be customized and carefully grafted on to the existing organization
(assuming we want evolutionary change and not revolutionary change).

Since the automation framework is dependent on the culture of the organization, it
needs to encompass (or deliberately exclude) what already exists:

o Existing Test Plans and Test Cases.

o Existing Test & QA Processes.

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.275

o Existing Test Team Organization.

o Existing Human Resources and Skills.

o Existing Tools. (For test data management, problem reporting, version control,

etc.)

Integration of the Test Tools

Types of Tool Compatibility

There are three main types of compatibility and integration which need to be considered
when selecting or building a test tool:

(1) Compatibility with the technical platform, such as the operating system, data

base management software, network software, etc.

(2) Compatibility with the development languages and tools. A particular automated

testing tool may work just fine with applications developed in one language, let=s
say Visual Basic, but cannot Asee@ objects like buttons in applications developed
using other languages.

(3) Compatibility with the other interconnected tools which constitute the test

environment, such as requirements management tools, test case repositories,
problem reporting and tracking tools.

Incompatibilities among any of these areas can seriously impede the effectiveness of
the test tools.

There may also need to be other areas of integration -- across different hardware
platforms ad devices, operating systems, networks, etc., or across different existing
and incompatible test case repositories and test data bases.

The fact that not just one but multiple types of integration is needed is usually major
complication in building the test facilities.

Development Tool Compatibility

How do we determine what test tools work the best (or even at all) with a particular
development tool? (Note that by asking this question we have considerably and

Appendix G: The Test Automation Framework

 Copyright © 2005 Collard & Company

 Case Study 1.276

artificially simplified the multi-dimensional compatibility issue which was raised above,
which included the technical environment, the development tool, the automated test
execution tool, and the elated test support tools. Even the two-dimensional
compatibility question of how well test and development tools work together is tough
enough, however.

There are five ways to tackle this compatibility question:

o Vendor-Neutral Published Evaluations

o Test Tool Vendor Certifications

o Development Tool Vendor Certifications

o Shared Knowledge of Users

o Hands-On Pilot Projects

Appendix H: Test Automation Activities

 Copyright © 2005 Collard & Company

 Case Study 1.277

APPENDIX H. TEST AUTOMATION ACTIVITIES

Since many factors need to be considered when you develop your performance test
automation strategy, it is easy to become distracted. Focus is important, so you need to
identify what is critical to your strategy.

I have listed over 100 activities below that testers and test managers typically undertake
when automating their performance testing. This list was compiled by merging the major
activities of twenty different test automation strategies. The scope of this list is broader
than just performance test automation, as it is usually beneficial to integrate the
performance test automation with the functional test automation. And automation often
drives other ancillary activities such as revising test procedures. Though it is broad, the
list is not all-encompassing: please add any critical activities you need which are not
already on the list. There is some overlap among these activities, and they are not
presented in any particular sequence. While some may be irrelevant in any given
situation, many are likely to contribute to the success of your test automation and a few
will be critical.

Review the following list and label each activity as either (a) critical (b) important, (c)
minor or (d) irrelevant to you. You should not label more than 15 to 20 as critical.

A. The Overall Approach
1. Developing your automation objectives and goals.
2. Prioritizing the automated test needs, across systems or across test projects.
3. Sketching a blueprint of the infrastructure: the test automation framework.
4. Recognizing and checking assumptions.
5. Developing the risk assessment methodology.

B. Support
6. Identifying the major constituencies who have vested interests in test automation,

and their success factors.
7. Selling the test automation strategy to senior management; obtaining management

commitment.
8. Obtaining system developers’ buy-in.
9. Obtaining system users’ buy-in.
10. Obtaining system administrators’ and operations management’s buy-in.

C. Review of the Current Situation
11. Using a test information gathering questionnaire to guide automation.
12. Conducting user satisfaction surveys regarding the test facilities.

Appendix H: Test Automation Activities

 Copyright © 2005 Collard & Company

 Case Study 1.278

13. Assessing readiness for test automation.
14. Taking an inventory of tools already installed.
15. Appraising current test automation skills.
16. Assessing the effectiveness of current or prior test automation attempts, and the

lessons learned or to be learned from them.

D. Justification of Test Automation
17. Performing a cost/benefit analysis for functional test automation.
18. Justifying the performance and robustness testing effort

E. Assessment of Automation Effectiveness
19. Setting criteria to assess the effectiveness of automated functional testing.
20. Setting criteria to assess the effectiveness of automated performance and

robustness testing.
21. Developing techniques for assessing test effectiveness.
22. Implementing the metrics needed to track the effectiveness of test automation.

F. Outsourcing
23. Deciding whether to outsource functional testing.
24. Deciding whether to outsource performance and robustness testing.
25. Deciding whether to outsource other automated testing or support tasks.

G. Automation Start-Up
26. Identifying the key automation start-up decisions and the process for making those

decisions.
27. Choosing the pilot project .
28. Spreading propaganda and success stories to promote interest in test automation.
29. Identifying any automation start-up issues to be resolved before proceeding.

H. Planning for Test Automation
30. Planning for the test resources.
31. Calculating the impacts of automation on the existing resources..
32. Estimating the automation work effort.
33. Preparing the automation project schedule.
34. Preparing the automation project budget.
35. Developing the automation work plan template including major milestones.

I. Automated Functional and Performance Test Plans
36. Developing a standard test plan outline.

Appendix H: Test Automation Activities

 Copyright © 2005 Collard & Company

 Case Study 1.279

37. Developing a test methodology and project template.
38. Defining the format and documentation requirements for test projects.
39. Defining quality gateways.
40. Establishing test entry criteria.
41. Developing methods for testing the impact of changes to a system.
42. Developing regression testing guidelines.
43. Setting the test coverage targets and test completion criteria.
44. Determining the work scope: developing guidelines for what to test manually and what to

automate.
45. Selecting the testing techniques appropriate for each situation.
46. Developing a test plan review checklist.

J. People and Organization Factors
47. Organizing the teams for the test automation strategy, feasibility study or proof-of-

concept pilot project.
48. Defining the automated testing roles & responsibilities.
49. Documenting formal job descriptions.
50. Establishing the role of the test librarian or test repository director.
51. Conducting staff orientations on how their work will change with test automation.
52. Training and skill upgrading in preparation for automation.
53. Hiring experienced consultants to guide the automation effort.
54. Deciding on centralized vs. decentralized automation.
55. Planning for a small, central advisory team to assist decentralized test automation

projects in various parts of the organization.
56. Deciding who tests the testers, e.g., by defining auditability and establishing audit

trails.

K. Tool Utilization
57. Developing the test tool requirements.
58. Performing the test tool evaluation and selection .
59. Selecting the automated testing platform.
60. Making the tool build versus buy decision.
61. Making the commercially available versus open source tool decision.
62. Identifying the types of testing and test-related tools needed.
63. Deciding which already-installed tools to keep and which to replace.
64. Implementing a front-end interpreter tool, to allow testers without programming skills

to use the automated testing tools.
65. Building simulators or prototypes for use in testing.
66. Using tools to facilitate walkthroughs and inspections.
67. Automating the consistency checking GUI windows and we page layouts, for

Appendix H: Test Automation Activities

 Copyright © 2005 Collard & Company

 Case Study 1.280

compliance with the look-and-feel usability guidelines.
68. Implementing network sniffing.
69. Implementing orthogonal array or all pairs tools to identify test configurations.
70. Implementing database integrity checking tools.
71. Using automated tools for checking security controls.
72. Determining how to integrate the test tools and test support tools.

L. Test Policies and Procedures
73. Establishing automated testing standards.
74. Developing guidelines for what to automate and identifying the most fruitful areas for

automation.
75. Developing policies for exploratory vs. structured testing.
76. Developing policies for early vs. late test automation on projects.
77. Developing a test glossary of terms.

M. Automation of System Requirements and Design
78. Providing an automated requirements management capability.
79. Providing traceability from system requirements to test cases, from test cases to

system versions, etc.
80. Designing for performance.
81. Designing for robustness.
82. Designing for testability.
83. Instituting design reviews for performance, robustness and testability.

N. Automation of System Development and Maintenance
84. Automating the checking of code compliance with the coding standards.
85. Upgrading the programmers’ workbenches with better tools, such as editors.
86. Automating the build process (to compile and integrate new system versions).
87. Automating the build verification smoke tests.
88. Developing a plan for more effective unit testing and integration testing, e.g., test-

driven development.
89. Implementing, tightening or smoothing change control and version control.
90. Implementing complexity analysis and defect prediction.

O. Performance Testing
91. Specifying the performance requirements and goals.
92. Developing a performance test plan template and a test planning guide.
93. Determining what to monitor and what to measure for performance.
94. Building the operational profiles.
95. Developing and using benchmarks.

Appendix H: Test Automation Activities

 Copyright © 2005 Collard & Company

 Case Study 1.281

96. Monitoring performance in live operation.
97. Developing guidelines for analyzing the measured performance data.
98. Developing guidelines for graphing and envisioning test information.
99. Developing guidelines for testing performance versus features.
100. Developing service level agreements and quality of service (QoS) goals.
101. Avoiding performance surprises by design reviews, early component-level testing, etc.
102. Developing guidelines for performance measurement data collection.
103. Calculating the test sample sizes.
104. Determining how to adjust (scale) the measurements from the test environment

to the live environment.
105. Developing guidelines for scalability testing.
106. Estimating the number of performance measurement cycles.
107. Piggybacking performance testing on functional testing by adapting and re-using

the existing functional test cases.

P. Robustness Testing
108. Specifying the robustness requirements and goals.
109. Developing a robustness test plan template and a test planning guide.
110. Determining what to monitor and what to measure for robustness.
111. Monitoring robustness in live operation.
112. Developing guidelines for testing robustness versus features.
113. Implementing software reliability engineering.
114. Implementing software fault insertion.

Q. Test Environment Management
115. Implementing better management and control of the test environment, such as

installing diagnostic tools to monitor the state of the test environment.
116. Automating the set-up and configuration of the test environment.
117. Coordinating or linking complex test infrastructures.
118. Developing policies for managing the test environment and the test lab.
119. Developing guidelines for maintaining test productivity and utilizing test resources

efficiently.

R. Test Data Management
120. Developing the organization structure of the test case library or repository, and

the procedures to manage this repository.
121. Establishing test case naming and numbering conventions.
122. Automating the generation of test data.
123. Automating the checking of database integrity.
124. Developing procedures for test case repository design and test case repository

Appendix H: Test Automation Activities

 Copyright © 2005 Collard & Company

 Case Study 1.282

maintenance.

S. Test Case Development
125. Documenting the characteristics of an effective automated test scenario.
126. Developing test scenarios (specs of test cases to be automated).
127. Writing automated test cases.
128. Promoting test case re-use.
129. Test flow and sequencing.
130. Test case consolidation and minimization.

T. Test Execution
131. Developing procedures for executing the test cases.

U. Problem Management and Resolution
132. Developing guidelines for evaluating the test results.
133. Automating the test results gathering.
134. Automating the test results evaluation.
135. Implementing an effective problem reporting and tracking system.
136. Documenting procedures for developing problem reports and handling test failures.
137. Setting priorities and deadlines for fixes to be available for re-testing.
138. Assigning severity levels to problems.
139. Upgrading diagnostic and debugging tools.
140. Determining how to identify and resolve false test results.
141. Developing guidelines for building confidence and acceptance of test results.
142. Developing guidelines for handling inconclusive test results .

V. Manual versus Automated Testing

X. Test Project Management
143. Implementing the use of project management tools for test projects.
144. Automating the test project status tracking and reporting.

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.283

APPENDIX I. AVOIDING PERFORMANCE SURPRISES

As we saw earlier, performance testing is often done very late in projects, when little
time remains to react effectively and fix performance and robustness problems prior to
the scheduled delivery date. Ideally, we would like to conduct performance testing
before or during the system design phase, so that the feedback from testing can
influence the design. This is not possible, because there is no system to test this early
in the system development process, nor are the test facilities available.

With iterative development methodologies, where we design and built the system in a
series of iterations, it is easier to use the performance measurements from one iteration
of the system to project likely performance for he next iteration, but this extrapolation
from version to version is often not very reliable.

What we need are methods to mitigate the surprises, even if we cannot eliminate the
need for performance measurements on the fully integrated system late in the project.
Some ways to minimize these last-minute “uh oh” discoveries in system performance
testing are as follows. There is some overlap among these suggestions.

1. Early Design Reviews

The performance measurement team and the performance tuning specialists can plan
to participate in the system design reviews, in order to identify likely performance
bottlenecks at the design stage.

Designing systems for performance is often not done very well. In small, simple
systems, the likely behavior of the system and its performance characteristics are fairly
obvious to its designers. In large, complex systems, designing for performance usually
becomes more important and also, unfortunately, much more difficult.

Design reviews naturally focus on feature validation. The designers and reviewers walk
through the proposed design in a series of mental thought experiments, feature by
feature, seeing if “we can get there from here”. We trace the processing of the system
through the design model in order to confirm the system will work correctly and to find
feature-level bugs in the design. In this series of mental experiments, the performance
issues may be an afterthought or not considered at all.

So the presence of the performance testers in these design reviews helps focus the
group’s attention on the performance implications of the design, and helps catch likely

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.284

performance problems in the design phase. We cannot guarantee this technique, and
performance issues often are found later in testing and live operation which “fell through
the cracks” during the review. However, the incomplete set of problems which we do
see and minimize at this stage more than justifies the design review. Later in this book, I
provide a checklist of questions for performance reviews of system designs.

2. Use of Prototypes for Load Testing

We can use early working or partially working prototypes of the system in performance
measurement, as substitutes until the full system eventually becomes available for
testing.

The unknown factor here is how close the performance of the prototype is to that of the
real system. There is a danger of false confidence if the prototype does not exhibit the
bottlenecks which are present in the real system. Since prototypes are “look and feel”
shells with limited internal functionality and usually contain minimal built-in controls,
such as error detection and recovery overhead, they often run much faster than their
final delivered counterparts.

3. Performance Prediction

We can employ performance prediction tools to guesstimate performance from static
models, i.e., without actually executing a test of the system. Therefore, we can use the
performance prediction tools early, before the application and the test environment are
available. Nevertheless, these performance modeling and prediction tools are frequently
not very satisfactory, because they are expensive and can be unreliable. I’ll explain how
these tools work a separate section later in this book, entitled tbd.

4. Early Check-out of the Test Facilities

Even if the early performance measurements are considered so inaccurate that ee will
have discard them, early testing is still useful to check out the test facilities. These early
trials help the testers see if the automated load testing tools, test cases and test
equipment are working, and to allow enough time to debug the test facilities.

5. Early Component-Level Performance Testing

A common difficulty with performance testing is that it occurs late in projects, after the
fully integrated system has already undergone a feature test. This means that we do not
identify scalability problems and bottlenecks until late in projects, when the design tends

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.285

to be “locked in concrete” and there is little time to react and re-code the slow portions
of the software.

In an attempt to identify bottlenecks within the individual components early, we (or
preferably the developers of the components) can perform a performance, load and
stress test on each major component as it becomes available. This parallel approach
works especially well in development projects which use an iterative approach to
building component, or in projects where the developers are going to re-use existing
components. These component-level tests usually need to be conducted using the
component test drivers. Hopefully, the software engineers have developed these drivers
already as part of the unit (component-level) testing. For example, we could utilize a
component driver to stress a shared, multi-threaded component, by simulating the
demand put on that component by ten concurrent threads.

The testers or the software engineers can use profiler tools to monitor the behavior of
the components during this testing, so that the developers know where the resources,
such as processor cycles, are being expended.

The component-level testing of performance ideally is closely coordinated with each
component’s developer, and coordinated with the availability of early builds from the
developers. Each developer will obtain early feedback about their component’s
performance, giving the developers plenty of time to fine-tune and optimize component-
level performance before the delivery of their components.

6. Early Trial Full-System Load Testing

The purpose of this early testing is not to measure the system’s response time and
throughput and load. Often, the earliest measurements will be so rough (e.g., not within
a target accuracy of plus or minus 25%), that they should be considered untrustworthy
and discarded. Why, then, bother with early load testing? There are three reasons:

o Identify load showstoppers early, so that we can address them early. Major
bottlenecks like deadlock in databases and missing Web pages, where the system waits
indefinitely to try to access them, do not need precise response time measurements.

o To uncover application feature and processing bugs that only reveal themselves
under stress.

o To check out the test facilities themselves, and allow adequate time to react and
get them debugged and working.

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.286

7. Use of Simulators for the Test Environment

We can use simulators in place of missing or unavailable parts of the infrastructure in
which the system will operate, such as computer chips which have not been built as yet,
mainframes, databases and networks.

Simulators are generally software implementations of hardware devices in which we
simulate only the necessary characteristics of the hardware in software, so the
simulation is imprecise (building closely matched simulation models is very expensive
and time consuming).

The types of simulators include environmental ones (which mimic the environment in
which the system operates), functional simulators (which mimic the functions performed
by the system we are testing or other systems which interface with it), and instruction
simulators (these mimic the ability of missing hardware to execute the software
instructions).

Simulation is also done for economic reasons, if it is prohibitively expensive to build the
actual test environment, or for safety reasons if the live testing is going to hazardous
(such as systems which launch nuclear missiles). Simulators are sometimes also called
emulators.

8. Designing for Performance

One purpose of the design review process is to identify likely bottlenecks at the system
design stage, so that we can alleviate them before we build, acquire or modify the
software.

“How do you improve the performance of your software? Simple: just delete all the
comments in the source code and recompile.” Do not take this advice seriously, but
there is grain of truth to it. Often “sloppy” design and programming practices de-tune the
system and cause bottlenecks and impediments to performance.

By “sloppy” design and programming we are referring to the tendency to make last-
minute, supposedly minor tweaks to the source code and to the system structure. These
tweaks presumably should not affect performance but often do: there may be
unnecessary branches and convoluted paths inadvertently designed or built into the
system. Even though deleting comments will not help, do not underestimate the power
of simply walking through the design and the source code, looking for performance
inhibitors.

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.287

There is another danger too. Tweaking to squeeze every nanosecond of performance
out of code can render than code incomprehensible and extremely difficult to debug and
maintain. We’ll discuss this danger in the section entitled “System Performance
Pressures”.

Performance means speed, responsiveness and throughput. Designing for performance
means identifying where most of the hardware processing is being performed (typically
90% or more of the processor cycles are expended in 2% to 10% of the software
instructions), identifying wait states, removing bottlenecks and optimizing the code.

In order to assess performance based on the system design, the software components
and their interconnections need to be already well defined. We then can estimate the
likely usage of the software components using a simulation.

The usage profile identifies how often each software component is likely to be called. In
addition, performing a performance assessment of the software design requires that we
estimate the number of processor execution cycles for an average call to each software
component. The number of execution cycles depends on the component’s estimated
size when it has been written (in lines of code), and expected mix of instructions within
the component (floating point divides usually take much longer than register compares).

Tools are available to help assess system performance. Some tools work strictly from
high-level models, though the more accurate ones (e.g., Quantify) require the source
code, so they cannot work from high-level designs.

Some “obvious” ways to improve system performance may not be feasible. For
example, consider an embedded system which is running too slowly. The first thought of
the uninitiated is to “get a faster chip or add more memory -- hardware is cheap”. (See
the early discussion in the section entitled: “The Fat Server Solution”.)

If the increment in hardware cost for a faster chip is only 25 cents per unit, but the
organization plans to ship a million embedded systems per month, the cost is another
$250,000 per month. You could hire another couple of performance testers with that
kind of budget. (This remark is meant as sarcasm. $2.50 per month is closer to the
mark.)

Some delays are inevitable in system operation, and if significant they must be
minimized or bypassed where possible. Consider, for example, a system which depends
on a dial-up modem. Modems are notorious for their latency, the wait time needed to

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.288

make a dial-up connection initially. A 56 kpbs modem sounds fast, until you consider
how much time is spent waiting, both initially and then between each burst of data.
Quadrupling the speed of the dial-up modem (224 kbps modems don’t exist yet and
perhaps never will), cannot help much with the latency.

In this situation, designing the system to minimize its dependency on the modem to the
degree possible, could help boost performance considerably. Instead of many small
back-and-forth data transmissions, perhaps the designers could bundle data together
into a one-time large message for transmission.

Most of the techniques for improving system performance are “common sense”, at least
to experienced designers and programmers. The developers implement many of these
techniques at the code level, not at the design level, i.e., by tweaking the source code
rather than re-designing, but nevertheless these code-level performance improvements
often have design implications.

For example, consider a software component that repeatedly derives the same value for
a data field through a time-consuming computational process. To improve performance,
the system calculates this derived value only once and then stores it, preferably in fast
cache memory if it will be accessed frequently. So the software engineer will implement
this improvement in the code, by writing source code to access the derived value rather
than re-computing it.

However, the decision to store the derived value of the data field affects the design of
the data tables and databases. It may lead to arguments with the data administrators
about the purity of a database which contains derived, quasi-redundant data. Once the
system has stored the value, there is a possibility many software components could use
it. So the decision to store the derived value is a design-level decision, not one to be
made by each individual software engineer who may need the value.

In addition, if many software components share the derived value, there is a possibility
of interference among these components. A new component may need to be added to
the design, with the exclusive job of provided access to the derived value and ensuring
it does not become corrupted. And, of course, this new component carries a risk that it
will become a bottleneck in itself.

10. The Performance Review

How do we review a system design to check if performance is likely to be acceptable?
Following these steps will help ensure a fruitful design review.

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.289

Have Timely Access to the Reviews

Most testers are not invited to design reviews. A pity – testers see things that architects
and developers can overlook.

Review the System Architecture

Preparation and familiarity are important: see the next point.

Understand How the System Works

First, we need to have a visible design. This means that the design has to be
documented (preferably with clear diagrams), and sufficiently well understood by the
reviewers that they can walk through it and perform mental thought experiments. A
typical experiment is to follow any given event or message through the system.

The less detailed this model is, the less precise will be the performance review. If it is
reasonably detailed (with major individual components identified, versus aggregations of
components), though, the modeling of performance becomes very complex. We can
use simulation languages like Simula or GPSS for these more complex simulation jobs.
A caution: we need time to learn these languages, and we need more time and
expertise to program and debug the simulation models.

Of course, if the design is detailed but the details are inaccurate or obsolete (designs
tend to evolve), then the simulation results may be worse than with less detail.

Review the Process Flow Model

Ask if there are use cases. Preparation and familiarity are important: see the next point.

Understand How the System will be Used

We need to know who the users groups are and how they will use the system
(operational profiles or usage patterns). We need some knowledge of the load on this
design: what the mix of transactions or events will be, and in what volumes. We also
need to know how each message, transaction or event will be processed: how it will
flow component-by-component through the design.

Walkthrough the Topology to Look for Bottlenecks

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.290

Look for:
 Areas of heavy resource consumption.
 Areas that are timing-critical.
 Areas that are heavily used.
 Areas where resources seem to be unbalanced

– over-capacity or under-capacity.

Review the Operational Track Record of similar other Systems

What similarities are there to the system being reviewed? Can the prior history be used
to predict performance or the locations of bottlenecks?

Review the Use of Shared Resources

Depending on how they are shared, they can significantly help – or hinder --
performance.

Identify resources which will be heavily shared.

Identify resources which cannot be shared – one user at a time must lock a resource.

Determine How to Minimize the Wait Times

Identify likely areas where waiting will occur, either waiting for events to happen or for
resources to become available. Most waiting is associated with I/O (input and output
operations). For example, cache frequently accessed data in fast memory. Minimize the
overhead spent in swapping data in and out of memory. Where waits are inevitable and
the designers cannot easily control the latency, for example, in waiting for a modem to
receive a response from a phone line, change the design in order to minimize the
dependency on the device.

Decide Where to Focus the More In-Depth Performance Review

Focus first on optimizing the parts of the software where most of the processor
hardware cycles are expended. This is likely to be within most heavily used and the
most computationally intensive software components. Frequently used and resource-
consuming code can be re-written and optimized to run very fast.

Then focus on areas where memory use is likely to be high, either semiconductor
memory or hard drives. Ensure that sufficient memory is allocated to minimize

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.291

swapping.

Review each High-Potential Component

Based on the load, we can estimate the improvement potential of each component –
how often it will be used, and approximately what resources it will need. We need to
know this information about each component:

o How frequently will it be used, and under what conditions?

o What resources does it need to execute?

o Can or must these resources be shared with other activities, or must they be
 dedicated?

o About how long will it take to execute? (Tools like Quantify compute this.)

o If it is multi-threaded, how many parallel threads can be active concurrently?

o Does use of this feature or component precludes the use of other components?

o Has this component already been optimized?

o If not, to what extent is its performance worth improving (how much of a
difference is optimization of this component likely to make?)

o How can its performance be improved? Minimizing the resource needs results in
fast execution (e.g., lessening the number of processor cycles needed to perform a
task). Performing tasks in parallel can cut the elapsed time. Software frequently
contains many small inefficiencies of this nature which we can hunt down and remove.
For example, is a variable being unnecessarily re-initialized (re-set to zero) before each
use?

Review the Efficiency of Computations

Review computationally intensive software components to ensure that the most efficient
algorithms have been used. It is common to have several algorithms which can
compute the same outcome, such as a square root, but their computation speeds vary
by a factor of a hundred. Areas which are often not seen as computationally intensive,
such as database searches, often are culprits.

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.292

Ensure computations are not more precise than needed. Sometimes, adding another
significant digit to the precision of a computed result doubles the computation time.

Do not re-compute frequently used values, unless the computation is virtually effortless.

Be aware of the relative efficiency of computer instructions, and look for faster ways to
perform the same operation. For example, compare operations are generally much
slower with mixed data types. In some combinations of hardware, operating system and
compiler, it is faster to add a number to itself, twice over, than to multiply it by 3. In other
environments, the exact opposite is true. It is helpful to be aware of the relative
performance of the various instructions.

Check that an optimizing compiler has been used for the most resource-intensive
software components.

Caution: optimizing for one particular platform is folly if the software might be ported
later to other platforms.

11. Designed-In Flexibility for Tuning

I made the point before that most systems are de-tuned when they are originally
delivered. This is not because of laziness and incompetence, instead it is similar to
buying an off-the-rack suit and then having it fitted.

In most systems today, there and many different parameters which we can adjust and
calibrate in order to optimize system performance. This implies that the performance
tuners need flexibility to do their work.

12. Review Questions

Good questions to ask in a system design review are:

Performance Requirements

o What are the performance requirements?

o Have all the stakeholders and especially the end-user groups been consulted to
determine if these requirements are acceptable?

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.293

o Are these requirements written in such a way that an independent test team can
verify them?
 - Are they clear and specific enough to be measurable?
 - Have the conditions been defined under which these performance levels
are to be achieved?

Loads or Demands

o What is the anticipated load from an external, black box view of the system?
 - Average?
 - Peak?

o How credible are these predictions?

Infrastructure and Architecture

o What are the target platform, operating environment and support infrastructure
for the system?

o What is the system architecture?
 - What is the topology of the system and its infrastructure?
 - How are the components linked together?

o Have we identified each component of the system and its infrastructure
(software, databases, network links and hardware)?

Capacity

o Have we identified the capacity of each component?

o Have we identified the circumstances in which the limitation of each component
can be reached and surpassed?

o How do we calculate the capacity of the assembled system from the capacities
and linkages of its components?

Process Flow

o How can we map this external load into the likely demand on each internal
component?

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.294

 - Is there a process flow model of the system?
 - Do we have visibility into the design, i.e., can we conduct mental thought
experiments where we walk through the design to exercise a feature or trace an event
as it flows from component to component?

Other Prior Experience

o Are there similar other systems?
 - In which ways are they comparable?
 - In which ways not?
- Do we have the operational track records of these systems?
 - What was the level of satisfaction with the performance of these systems?
 - If there were performance problems:
 -- What caused them?
 -- How were they fixed?

Tuning

o What processes will people use to tune this system?

o What features, if any, have the system developers built in to facilitate this tuning?

o What flexibility do the tuners have?
 - For example, can they vary the size allocated to a queue?
 - If so, over what range can the maximum queue length be varied by the
tuner, on site in the field?

13. Designing for Testability: Assessing Testability

The topic of testability, in the sense of determining whether a system is testable,
includes considerations such as whether the system is too raw, buggy and unstable to
bother starting to test it, whether the test infrastructure is ready, and whether the test
team is ready. These particular items will not be addressed again in this section. Note
that the term “testability” is sometimes used to mean the probability of software failure
over time. This meaning is not being used in this section. (Personally, I do not like this
meaning -- I think it confuses the situation.)

The question examined in this section is how systems can be designed to improve their
testability.

Appendix I: Avoiding Performance Surprises

 Copyright © 2005 Collard & Company

 Case Study 1.295

14. The Characteristics of a Testable System

As systems become more complex, it becomes more difficult and eventually impossible
to test them adequately unless they have been specifically designed to be testable.
Many testers experience the frustration of testing systems for “hidden” internal behavior,
and “looking under the hood” is a common part of testing. The point is that much of a
system's behavior may be hidden and not directly observable from the outside, which
severely limits the effectiveness of non-invasive black-box testing. For example, an
internal buffer overflow may be extremely difficult to observe in testing or in live
operation, unless a capability has deliberately been designed into the system to provide
this information. In addition, in some types of systems, such as video games, the
internal behavior is deliberately hidden in order to enhance the value of the system.
(Where’s the fun in playing a game which is predictable?)

Appendix J: System Architecture Diagrams

 Copyright © 2005 Collard & Company

 Case Study 1.296

APPENDIX J. SYSTEM ARCHITECTURE DIAGRAMS

This appendix provides examples of visual architecture models. These diagrams help us
understand what the infrastructure is and how it works. It also helps us to hunt for
bottlenecks, determine what behaviors of the system to monitor, where to collect data
and how to interpret that data. Note that these diagrams represent the logical
architecture, which is not necessarily how the design will be physically implemented.

J.1 User-Oriented Architecture

This diagram groups the system capabilities together from the users’ perspective. For
example, in a departmental model we might have a dedicated server or cluster server
for each major user group, such as Customer Service, Manufacturing or Warehousing,
and these departmental servers share common databases of customers, products,
orders, etc.

<<See separate file on System Architecture – it contains the diagrams>>

Appendix J: System Architecture Diagrams

 Copyright © 2005 Collard & Company

 Case Study 1.297

J.2 Function-Oriented Architecture

This function-oriented view shows servers assigned according to the major functions
they provide, such as a database server, a web server, a call center (voice telephone)
server and a print server.

<<See separate file on System Architecture – it contains the diagrams>>

Appendix J: System Architecture Diagrams

 Copyright © 2005 Collard & Company

 Case Study 1.298

J.3 Geographically-Oriented Architecture

This perspective allocates one area or portion of the page to each distinct location (e.g.,
London, Los Angeles, New York, etc.), and also shows how the different locations
connect and interact. This type of diagram often is overlaid on a map, e.g., of the United
States or of the world.

<<See separate file on System Architecture – it contains the diagrams>>

Appendix J: System Architecture Diagrams

 Copyright © 2005 Collard & Company

 Case Study 1.299

J.4 Device-Oriented Architecture

The device-oriented view focuses on the likely physical implementation of the logical
architecture. If some physical design decisions are not yet final, you may need to either
ignore details or find a way to show uncertainties in your diagram. Drawing one big
cloud-like figure on the page and placing a question mark at its center is too fuzzy to
guide the performance test. But until the physical design is final some parts of the
architecture diagram will effectively be little clouds, connected to other sub-systems on
the page.

<<See separate file on System Architecture – it contains the diagrams>>

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.300

APPENDIX K. TEMPLATE OF THE PERFORMANCE TESTING WORK PLAN

Part A: Test Preparation

This outline is intended to provide a starting point for developing test project work plans.
This test work plan is developed within the context of a system release cycle, and will
be coordinated with the overall development or maintenance activities and with the
feature test plans. Some people are looking for a methodology for performance and
robustness testing, a guide for how to do it. At the risk of sounding grandiose, this
outline is a methodology, or at least the core of one. Other people believe strongly that
there is no such thing as one right way to test system performance – the process is not
cut-and-dried, and on any particular project competent people need to apply judgment
and determine how to proceed. For the latter people, this is not a methodology, just an
outline.

The typical performance and robustness testing project contains the following series of
activities. Apply common sense in using this outline, as it needs to be adapted to fit
your specific situation. Any particular project may not include all of these steps, and
they may not happen exactly in the sequence shown here. Often these steps are not
done in a simple linear sequence – as the test project evolves it can go through
feedback loops and iterations of these steps. Tests of minor system upgrades tend be
very different than ones of large new systems, so we often follow a different series of
steps (a variation of this project outline) for these small applications.

The main activities in Part A are:

1. Gather background information on the situation.
2. Validate the test project need and feasibility.
3. Develop an understanding of the situation.
4. Develop the overall test approach.
5. Plan the measurement and load strategy.
6. Plan the test automation and testware.
7. Schedule and budget the test project.
8. Write and present the test plan.

The main activities in Part B are:

1. Prepare for the test execution.
2. Execute the test run and collect data.

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.301

3. Analyze data and evaluate the test results.
4. Present conclusions and recommendations.

Project Outline

1.0 Gather background information.

1.1 Understand the driving motivation and current impetus for performance and
robustness testing.

1.2 Climb the learning curve.
Compile documentation about the system under test: functionality, architecture, support
environment, usage patterns, support staff, etc.
Complete the information gathering questionnaire, or as much as is justified and
feasible. (The questionnaire is attached.)

1.3 Review the project goals.
Identify the stakeholders and their critical success factors.
Review the stated goals and acceptance criteria for the new or modified system.
Determine if the goals and criteria are specific and measurable.
Determine if meeting the stated criteria is feasible.

2.0 Validate the test project need and feasibility (a “sanity check”).

2.1 Perform an initial impact assessment to assess feasibility and justification.

2.2 Review the management and client expectations for the test project.

2.3 Decide if these expectations are likely to be met.

2.4 Prepare a presentation justifying the testing project.

3.0 Develop an understanding of the situation.

Note: the steps in this section assume the testers are unfamiliar with the situation, and
that it is worth their effort to climb the learning curve.

3.1 Understand the constituencies and vested interests.

3.2 Walk though the system under test with non-technical people (e.g., users) and

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.302

separately with technical people (e.g., the system architects).
The system’s mission and functionality.
The organization’s success factors for this system.
Process flow models, or other types of models to show how the system works.
The system’s scope, boundaries and interfaces.
When the system will be ready for testing

3.3 Explore the system hands-on and on-line if it is available, or its predecessor if is
not.

3.4 Understand the users.
Obtain their basic demographics.
Interview representative users to find their needs and opportunities.
Observe user work activities in their normal work places.
Build operational profiles if necessary.

3.5 Understand the testware needs.
Identify the resources which will be used by the system in live operation.
Determine how these will be represented in the test lab.
Review the existing test facilities and determine how they can be used in this test
project.

3.6 Assess the baseline.
Review the data on the existing operations’ service levels and user satisfaction.
Determine the adequacy of the existing data, and assess the need to capture additional
baseline measurements.
Derive the message or story the baseline data is telling us. Determine the implications,
if any, of this message for the testing project.

3.7 Understand the overall project context.
Determine how the performance and robustness testing fits into the bigger picture of
the:
 System development, acquisition or maintenance project.
 Overall corporate culture and policies.

4. Develop the overall test approach.

4.1 Develop the testing project goals and validate them with the stakeholders.

4.2 Perform a risk assessment of the new system, to determine where the performance

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.303

and robustness issues are likely to be.

4.3 Develop contingency plans.

4.4 Determine the testers’ additional information needs, if any, and
 gather this information.

4.5 Size the project.
Review the established test project goals to decide on scope and priorities.
Establish the test scope.
Establish the test priorities.
Determine how to measure test coverage.
Set the coverage goals for the project.
Define the test project entry & exit criteria.

4.6 Decide how structured versus exploratory the test project should be.
See the guidelines for structured versus exploratory testing.

4.7 Define the test results evaluation techniques.
What methods will be used to evaluate the test results.
What methods will be used to avoid false test results.

4.8 Coordinate the performance and robustness testing project with related activities on
other projects.

5. Plan the measurement and load strategy.

5.1 Develop a measurement plan.
 What to measure, why, when, where and how.

5.2 Determine what test loads to employ.

5.3 Determine what measurement tools to employ.

5.4 Determine what data collection and validation methods to employ.

6. Plan the test automation and testware.

6.1 Outline and justify the test automation strategy, and determine what techniques we
will use in the automated testing.

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.304

6.2 Develop the test data acquisition strategy (test databases and test work loads).

6.3 Prepare the test environment.
Review the environment(s) in which the live system is expected to operate.
Decide what testware (test equipment, test tools, etc.) is needed.
Develop methods to adjust for the differences between the test vs. live environments.
Assess what existing testware from other projects can be re-used in this one.
Develop a test equipment acquisition or provisioning plan.

6.4 Develop the test cases.
Design the structure and format of the test case libraries.
Review the library format for maintainability and re-use.
Script (code) the test cases.
Validate the test cases: conduct peer reviews, and run and debug them.
Document the test cases.
Load them into the test library under version control.

7. Schedule and budget the test project.

7.1 Outline a work plan for the test project.

7.2 Estimate the project resource needs.
 Qualified people.
 Equipment and facilities.

7.3 Develop the project schedule and budget, and identify major milestones.

8. Write and present the test plan.

8.1 Draft the test plan in the required format.

8.2 Establish the procedures to update the test plan on an on-going
 basis.

8.3 Present and review the draft of the test plan, and incorporate revisions.

8.4 Present the test plan to senior managers.

8.5 Obtain approval to proceed with the test project.

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.305

9. Plan to use the test plan.

9.1 Describe the procedure by which we monitor the project’s progress.

9.2 Decide how we compare progress to plan, and analyze the differences.

9.3 Describe how we update the test plan as conditions change.

Prepare to transition from planning to execution.

Part B: Execute the Tests and Evaluate the Results

Part B of this outline is less detailed than part A, because the specifics of the
implementation depend on the decisions made in part A, the test planning.

Some of the steps suggested in Part B deliberately overlap ones from Part A.

1B. Prepare for the Test Execution

Prepare the test cases (test loads).
 Select and extract test cases from existing libraries.
 Adapt the test cases to fit this project.
 Develop new test cases as needed.
 Modify existing test cases as needed.
 Validate the test cases work, e.g., by trial runs.

Ensure that support processes and tools are in place and working, such as problem
tracking, version control and project status reporting.

Set up and check out the test facilities.

Load the system version that we are testing.

Load other interconnecting or concurrently running systems (the background noise).

Load the test tools, and check they are correctly installed and configured.

2B. Execute the Test

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.306

Determine the objectives of the next test run, refine the measurements to take and
select the test load to match.

Run the test cases in the test load.

Exploratory tests; planned tests.

During the run, monitor the state of the test environment.

Capture the measurement data.

Review the measurement data for validity.

Is it trustworthy and usable?

3B. Evaluate the Test Results

Perform data cleansing and summarization.

Develop trend charts.

Derive patterns from the raw data.

Perform before-and-after comparison of patterns to discern the cause-and-effect of
tuning.

Confirm or refute the hypotheses which were formulated during the test planning.

Form conclusions from the measurements.

Develop the recommendations.
Tuning and debugging.
Re-sizing of infrastructure.
System acceptance and readiness for use.

Re-test the system performance after the tuning and other modifications.
Develop or modify the test cases, the test environment and the data being collected, as
makes sense.

Continue to loop through the cycles of tuning, fixing or right-sizing, followed by re-testing
until the test goals have been achieved.

Appendix K: Performance Testing Work Plan

 Copyright © 2005 Collard & Company

 Case Study 1.307

Prepare a final presentation of the test outcome, namely the findings, conclusions and
recommendations.

Prepare the testware for re-use.

Present the findings, conclusions and recommendations.

Clean up the test lab, ready for the next lab users. Return borrowed equipment.

4B. Conduct a Post-Project Review

Lessons learned?

	Introduction to the Case Study
	Overview
	The Rationale for this Case Study
	Skills Needed for the Case Study
	Organization of this Case Study
	Learning Objectives
	Disclaimers
	The Assumptions behind this Book
	Terminology
	The Use of Mathematics in this Case Study

	Using the Case Study
	The Concise versus the Full Version of the Case Study
	A Friendly Warning
	The Exercises
	The Suggested Answers
	Sequence of the Steps in the Test Methodology (and thus the
	Exercise Options
	Time Required for the Exercises

	I. THE CONCISE VERSION OF THE CASE STUDY
	Exercise 1.1: Reviewing the Performance Testing Objectives
	Objectives
	Instructions
	Questions to Address

	Description of the Situation, Section A: The Business Contex
	Background
	Your Role
	Business Goals
	Success Criteria
	Testing Objectives

	Exercise 1.2: Modeling the Architecture
	Objectives
	Instructions

	Description of the Situation, Section B: The System Architec
	Exercise 1.3: Specifying the Performance Requirements
	Objectives
	Instructions

	Exercise 1.4: Performing the Initial Impact Assessment
	Objectives
	Instructions
	Levels of Demand – Peak Load
	Assumptions

	Introduction to LAN Models
	LAN Model for Low Traffic
	LAN Model for Moderate to High Traffic

	LAN Utilization Worksheet
	LAN Utilization Worksheet

	Exercise 1.5: Deciding Where to Observe and What to Monitor
	Objectives
	Instructions

	Exercise 1.6: Selecting the Methods of Testing
	Objectives
	Instructions

	Exercise 1.7: Determining the Test Focus and Coverage
	Instructions
	Questions to Address – Load Demand Risks
	Questions to Address – Infrastructure and Design Risks

	Exercise 1.8: Calculating the Test Work Load
	Objectives
	Instructions
	Questions to Address

	A. Test Work Load Volumes
	B. Test Execution Logistics

	Description of the Situation, Section C: Volumetric Assumpti
	User Demand
	Session Statistics
	Peak Loads

	Exercise 1.9: Balancing Exploratory and Structured Testing
	Objectives

	Exercise 1.10 Reviewing a Detailed Test Scenario
	Objectives
	Instructions

	Description of the Situation, Section D: Performance Test Sc
	Description of the Test Scenario

	Exercise 1.11 Designing the Test Environment
	Objectives
	Questions to Address

	Exercise 1.12: Estimating the Number of Test Cycles
	Exercise 1.13: Reviewing the Performance Test Plan
	Performance Test Plan Review Checklist

	II. The Full Case Study: Understanding the Situation
	Exercise 2.1: Reviewing the Proposed Testing Objectives
	Introduction
	Instructions
	Questions to Address

	Follow-Up: Team Discussion of the Testing Objectives
	Instructions

	Description of the Situation, Section 2.A: The Business Cont
	A.1 Overview
	A.1.1 Context
	A.1.2 Objectives

	A.2 The Business Background
	A.3 Your Responsibilities
	A.4 The Basic Functions of the System
	A.5 The Interfacing Systems
	A.6 The Business Operations and Processes
	A.7 System Work Flows
	A.8 The Business Objectives for the System
	A.9 The Performance Goals
	A.10 System Constraints
	A.10.1 Usability
	A.10.2 Data Availability and Integrity
	A.10.3 Security
	A.10.4 Maintainability

	A.11 Assessment of the Current System Performance and Robust
	A.12 The Performance Testing Objectives
	A.13 Trade-offs

	Exercise 2.2: Modeling the Architecture
	Introduction
	Instructions

	Description of the Situation, Section 2.B: The System Archit
	B.1 Architecture Overview
	B.1.1 Infrastructure Design Goals and Principles
	B.1.2 Logical Vs. Physical Design
	B.1.3 Design Review and Validation

	B.2 Designing for High Availability
	B.2.1 Designed-In Redundancy
	B.2.2 Designed-In Scalability
	B.2.3 Clustering and Fail-Over
	B.2.4 Geographic Dispersion
	B.2.5 Locations and Assignments of the Servers

	B.3 Major Tiers and Work Load Distribution
	B.3.1 The Front-End
	B.3.2 The Back-End
	B.3.4 Load Balancing
	B.3.4.1 Network Load Balancing for the Front-End

	B.4 The Web Sites
	B.4.1 The Primary Web Site
	B.4.2 Providing Web Services
	B.4.3 Proxy Servers
	B.4.4 Web Databases
	B.4.5 Location of Web Content Storage
	B.4.6 The Secondary Web Site

	B.5 The Data Architecture
	B.5.1 The Data Content
	B.5.2 Data Conversion
	B.5.3 Database Size
	B.5.4 The Database Servers
	B.5.5 Data Distribution and Mirroring

	B.6 Networks and Communications
	B.6.1 The Network Topology at Headquarters
	B.6.2 Network Interface Cards (NICs)
	B.6.3 Utilization of Network Technologies
	B.6.4 The E-Mail and Fax Servers
	B.6.5 The Voice Telephone Servers
	B.6.6 The Wireless Routers or Servers
	B.6.6 The West Coast Remote Location Servers

	B.7 Other Subsystem and Component Descriptions
	B.7.1 The Application Servers
	B.7.2 The Print Servers
	B.7.2.1 Print Out-Sourcing
	B.7.3 The Support Software

	B.8 Security Considerations
	B.8.1 IP Addresses
	B.8.2 Firewalls
	B.8.3 Trade-offs of Security and Performance

	B.9 Scalability Considerations
	B.9.1 Application Processing Scalability
	B.9.2 Database Scalability
	B.9.3 Network Scalability

	B.10 System Implementation
	B.10.1 Re-Use of the Existing Equipment
	B.10.2 The System Implementation Strategy
	B.10.3 Physical Installation and Set-Up of the Equipment

	B.11 Architecture Evaluation
	B.11.1 Review History
	B.11.2 Likely Performance Vulnerabilities
	B.11.3 Possible Bottlenecks
	B.11.4 Test Suggestions from the Technical Community
	B.10.4.1 Database Performance
	B.10.4.2 Web Site Performance
	B.10.4.3 Maintainability

	Exercise 2.3: Specifying the Performance Requirements
	Instructions

	Exercise 2.4: Performing the Initial Impact Assessment
	Instructions
	Simplifying Assumptions

	III. DETERMINING THE PERFORMANCE TEST APPROACH
	Introduction
	Exercise 2.5: Deciding Whether to Outsource
	Instructions
	Introduction

	Advantages of Outsourcing
	Disadvantages of Outsourcing
	Outsourcing Work Sheets
	Advantages of Outsourcing
	Disadvantages of Outsourcing

	Exercise 2.6: Selecting the Methods of Testing
	Instructions
	Test Methods Work Sheet

	Exercise 2.7: Determining the Test Focus and Coverage
	Instructions
	Questions to Address (A: Primary Factors)
	Questions to Address (B: Secondary Factors)

	Exercise 2.8: Calculating the Test Work Load
	Instructions
	Questions

	A. Test Work Load Volumes
	B. Test Execution Logistics

	Description of the Situation, Section 2.C: Volumetric Assump
	C.1 Measurements and Assumptions
	C.1.1 User Demand
	C.1.2 Session Statistics
	C.1.3 Hits and Views
	C.1.4 Peak Loads

	Exercise 2.9: Balancing Exploratory and Structured Testing
	Instructions
	How Much Do We Know?

	Exercise 2.10: Developing Your Test Automation Framework
	Assessing Readiness for Test Automation
	Designing the Automation Framework

	Exercise 2.11: Estimating the Number of Test Cycles
	Exercise 2.12: Defining the Roles and Responsibilities
	Exercise 2.12 Building Flexibility into the Performance Test
	Exercise 2.13 Coordinating Performance Testing with other Ac

	IV. SPECIFYING THE TESTS
	Exercise 2.14: Developing the Performance Test Scenarios
	Instructions

	Description of the Situation, Section 2.D: Performance Test
	D.1 A (Claimed) High-Opportunity Test Scenario
	D.2 A Detailed Version of the Test Scenario
	D.2.1. Description
	D.2.2. Purpose and Intended Use
	D.2.3. Justification
	D.2.3.1 Possible Outcomes

	D.2.4. Target Audience
	D.2.5. Performance Requirements addressed by this Scenario
	D.2.6. Hypotheses to be Proven or Disproven
	D.2.7. Description of the Test Scenario
	D.2.8. Test Infrastructure
	D.2.8.1 Test equipment

	6.2.9. Pre-conditions
	6.2.10. Expected Actions
	6.2.11. Timings
	6.2.12. Post-conditions
	6.2.13. Test Work Loads
	6.2.14. Types of Testing to be Utilized
	6.2.15. Types of Testing that are NOT included in this Proje
	6.2.16. Automated Test Scripts Used in this Scenario
	6.2.17. Manual Test Scripts
	6.2.18. Data Collection Plans
	6.2.19. Data Interpretation and Analysis Plans
	6.2.20. Results Evaluation and Reporting
	6.2.21. Proof of Concept / Trial Run
	6.2.22. Project Management and Status Tracking

	Exercise 2.14: Selecting the Test Tools
	Instructions xxx

	Exercise 2.15: Using the Test Tools
	Instructions
	Questions to Address

	Exercise 2.16: Collecting the Performance Data
	Questions to Address

	Exercise 2.17: Analyzing the Performance Data
	Questions to Address

	Exercise 2.18: Identifying and Reviewing the Outstanding Iss
	Questions to Address

	Description of the Situation, Section 2.E: Supporting Inform
	E.1 System Usage Demographics
	E.1.1 Timing of the Occurrences of Peaks
	E.2 Feature List and Operational Profile
	E.2.1 Customer Service Group
	E.2.2 Catalog Publishing Group
	E.2.3 Warehouse Group
	E.2.5 Senior Management Group
	E.3 Transaction Lengths
	E.3.1 Customer Service Group
	E.3.2 Catalog Publishing Group
	E.3.3 Warehouse Group
	E.3.4 Information Systems Group
	E.3.5 Senior Management Group

	E.4 Other Systems on the Shared Infrastructure
	E.4.1 Frequency of Utilization
	E.4.1.1 Billing Group
	E.4.1.2 Publisher Ordering Group
	E.4.1.3 Marketing Group
	E.4.2 Transaction Lengths

	E.5 Growth Projections
	E.6 Changing Mix of Demands
	E.7 Service Level Agreements (SLAs)
	E.8 System Development and Feature Testing Methodologies
	E.9 Automated Test Facilities
	E.10 Test Conditions and Constraints

	Exercise 2.19: Transitioning to Post-Delivery Live Performan
	Introduction

	Exercise 2.20: Team Discussion of the Remaining Test Issues
	Instructions

	APPENDICES
	Appendix A. Basic Definitions and Concepts
	Acceptance Criteria The criteria to be met before a system o
	Calibration Test This type of testing is interleaved with tu

	Appendix B. Establishing Performance Requirements
	An Example of a System Performance Requirement
	The Process for Setting Requirements
	Setting Performance Requirements Early
	Mapping from the User’s Perspective to the System Administra
	Including a Performance Focus in the System Design
	Defining the Workloads
	Bypassing Load Calculations
	Performance Objectives

	Appendix C. The Initial Impact Assessment
	Introduction
	The Purpose and Nature of the IIA
	Types of Impact Assessment
	The Scope of the IIA
	Prioritizing the Performance Test Needs
	What Situations Need to be Assessed?
	Prioritizing Within Systems
	The Prioritization Process
	When to Conduct the IIA
	Potential Funding Issues

	Appendix D. Roles and Responsibilities
	Overview
	The Role of the CIO and Senior Managers
	The Role of System & Network Administrators
	The Role of the Testers
	The Performance Test Team
	A Caution

	Appendix E. Performance and Robustness Testing Methods
	Approaches to Testing
	1.0 Testing which is driven by what we want to measure.
	2.0 Testing which is based on the source or type of the load
	3.0 Testing which seeks to stress the system or find its lim
	4.0 Testing which focuses on the impact of changes.

	Appendix F: Challenges in Performance and Robustness Testing
	Why is Performance Testing Difficult?
	Common Issues of the Testers
	A. Background Knowledge
	A1. Understanding of the System and its Context
	A2. Slope of the Learning Curve
	A3. Availability of a System Model
	A4. The System Scope and Boundaries

	B. The Testware
	B1. Adequacy of the Test Facilities
	B2. Adequacy of the Test Work Loads
	B3. The Overhead and Logistics of Testing the System
	B4. Unanticipated Glitches in the Test Environment

	C. The Live and Test Environments
	C1. Environment-Specific Issues
	C2. Mixed Environments
	C3. The Impact of New and Improved Technologies
	C4. Large Numbers of Testable Configurations

	D. The Testing Tools
	D.1 Expense and Complexity of the Tools
	D.2 Tool Limitations
	D.3 Mis-Use of Tools

	E. The Test Methods
	E.1 Testability
	E.2 Deciding What to Measure
	E.3 Lack of Repeatability
	E.4 Interpretation of Results
	E.5 Problem Isolation
	E.6 Validity and Credibility of the Results

	F. Project Management
	F.1 Late Occurrence in Projects
	F.2 Testing without Pre-defined Exit Criteria
	F.3 “Trivial” Changes which have Widespread Consequences
	F.4 Specialized Expertise Required
	F.5 Coordination of Specialists
	F.6 Lack of Candor

	Appendix G. The Test Automation Framework
	Integration of the Test Tools
	A. The Overall Approach
	B. Support
	C. Review of the Current Situation
	D. Justification of Test Automation
	E. Assessment of Automation Effectiveness
	F. Outsourcing
	G. Automation Start-Up
	H. Planning for Test Automation
	I. Automated Functional and Performance Test Plans
	J. People and Organization Factors
	K. Tool Utilization
	L. Test Policies and Procedures
	M. Automation of System Requirements and Design
	N. Automation of System Development and Maintenance
	O. Performance Testing
	P. Robustness Testing
	Q. Test Environment Management
	R. Test Data Management
	S. Test Case Development
	T. Test Execution
	U. Problem Management and Resolution
	V. Manual versus Automated Testing
	X. Test Project Management

	Appendix I. Avoiding Performance Surprises
	1. Early Design Reviews
	2. Use of Prototypes for Load Testing
	3. Performance Prediction
	4. Early Check-out of the Test Facilities
	5. Early Component-Level Performance Testing
	6. Early Trial Full-System Load Testing
	7. Use of Simulators for the Test Environment
	8. Designing for Performance
	10. The Performance Review
	Have Timely Access to the Reviews
	Review the System Architecture
	Understand How the System Works
	Review the Process Flow Model
	Understand How the System will be Used
	Walkthrough the Topology to Look for Bottlenecks
	Review the Operational Track Record of similar other Systems
	Review the Use of Shared Resources
	Determine How to Minimize the Wait Times
	Decide Where to Focus the More In-Depth Performance Review
	Review each High-Potential Component
	Review the Efficiency of Computations

	11. Designed-In Flexibility for Tuning
	12. Review Questions
	13. Designing for Testability: Assessing Testability
	14. The Characteristics of a Testable System

	Appendix J. System Architecture Diagrams
	J.1 User-Oriented Architecture
	J.2 Function-Oriented Architecture
	J.3 Geographically-Oriented Architecture
	J.4 Device-Oriented Architecture

	Appendix K. Template of the Performance Testing Work Plan
	Part A: Test Preparation
	Part B: Execute the Tests and Evaluate the Results

