
Gail Rutherford 1 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

WHERE AND HOW PERFORMANCE TESTING MADE A DIFFERENCE

FOR THE

COMMON OPERATING ENVIRONMENT (COE)

System Description:

The software under development was the Common Operating Environment (COE)

sponsored by the Defense Information Systems Agency (DISA). It provides the

foundation for the Services to build their Command and Control systems. The COE is

not a system itself but provides many functions that are commonly used by these other

systems, such as, security, system administration, mapping, and communications and data

fusion. As a foundation it was critical that the software performs all the functions

expected and that it also performs efficiently enough so that sufficient computer

resources are left so that all the other components can operate the way they needed to.

The new software was being updated to take advantage of new technology, both

hardware and software. Computers are more powerful and cheaper than they were 15

years ago and many of the young service people are familiar with computers and the

standard Windows interface. New programming languages promised better performance,

flexibility and the ability to interact easily with commercial products.

Three developer organizations were involved in building different parts of the foundation,

operating under three different contracts. There appeared to be little interest in them

cooperating or coordinating their efforts which led to several stalemates in progress of the

development. This Tiger Team effort was the result of one of the stalemates.

People who attended the Fall 2003 Workshop on Performance and Reliability may

remember the presentation Mr. Chris Johnson gave. This paper is discussing the same

project but is expanding the discussion to cover how we organized our testing problem,

why we chose to measure the kinds of activities that we did and what the effects of those

decisions were. The test effort took place from January through May of 2002.

The following figure shows the conceptual organization of the COE software components

and how they are expected to relate to other, add-on components.

Gail Rutherford 2 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

COE Foundation Components

 C

O

E

C

O

E

Standard Application Program Interfaces

Operating System Services (UNIX, NT) and Windowing (X, Motif, Windows)

Security

Management

Services

Executive

Manager
COE Tools

Print

Services

Network

Services

System

Management

Services

Management

Services
Communications Distributed

Computing

Presentation

and Web Services

Data

Management

INFRASTRUCTURE SERVICES

KERNEL SERVICES

COMMON SUPPORT APPLICATIONS

Logistics

Analysis

Office

AutomationMCG&I

Developer’s

Kit

Correlation
Message

Processing
Alerts

Data

Access

Combat Support,

Tactical, and

Strategic Mission

Applications

Business

Applications

Functional

Applications

JOINT/CINC

Applications

Service C2

Applications

Intelligence

Applications

Tactical

Specific DB’s

Combat

Support DB’sIntel DBOther Files
Strategic

Specific

C2 DB’s

DATABASES

On-Line

Help

SHADE

C

O

E

C

O

E

Standard Application Program Interfaces Standard Application Program Interfaces

Operating System Services (UNIX, NT) and Windowing (X, Motif, Windows)

Security

Management

Services

Executive

Manager
COE Tools

Print

Services

Network

Services

System

Management

Services

Management

Services
Communications Distributed

Computing

Presentation

and Web Services

Data

Management

INFRASTRUCTURE SERVICES

KERNEL SERVICES

COMMON SUPPORT APPLICATIONS

Logistics

Analysis

Office

AutomationMCG&I

Developer’s

Kit

Correlation
Message

Processing
Alerts

Data

Access

Combat Support,

Tactical, and

Strategic Mission

Applications

Business

Applications

Functional

Applications

JOINT/CINC

Applications

Service C2

Applications

Intelligence

Applications

Tactical

Specific DB’s

Combat

Support DB’sIntel DBOther Files
Strategic

Specific

C2 DB’s

DATABASES

On-Line

Help

SHADE

Gail Rutherford 3 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Problem Statement:

The published release date was rapidly approaching and many problems still existed. For

example,

• The foundation components wouldn’t run continuously for 48 hours without

crashing,

• the user initialization time was greater than 5 minutes when a modest number of

tracks were displayed on the World Map,

• it appeared that parts of the new user interface were generally much slower to

respond than the currently deployed system and

• the new user interface required more mouse-clicks to get to the same features.

The objective of the Tiger Team was to get the software to a point that the services could

begin formal integration, certification, operational test and fielding. The sponsor required

that the performance criteria be that

• The newly developed software performs “at least as well as the currently

deployed system”.

The developers pointed out how quickly background processes completed and how

quickly data could be moved from one internal component to the next. Proponents of the

deployed system talked about how hard it would be for people to learn the new user

interface (that was substantially different from the old).

Meeting the performance criteria was complicated by several facts, among them, the new

software was required to handle substantially more data, the symbology was more

complex to render, and no baseline performance data existed for deployed system. There

was also the problem of defining what performance we wanted to measure and improve.

 We chose to define “System Performance” as made up of the following three parts,

o End-user experience

o Resource Usage

o Endurance

We selected these areas to concentrate on because a good end-user experience would be

necessary to get buy-in by the user community; good resource utilization was required for

the follow-on components to be able to run; and adequate endurance would allow for

operational stability.

In addition we needed to capture the end-user performance parameters of the deployed

system for comparison purposes.

Lab Setup:

Gail Rutherford 4 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

We needed to emulate key components of a very large wide-area network (WAN)

composed of many local area networks (LANs) that are linked in order to share data.

Servers capture data from a variety of sensors and other data sources, perform basic

analysis and “data fusion” functions and then update the location and other data for an

“object” on land, sea or in the air. The servers periodically update other servers and

clients “down-stream” with the data that they have requested. The updates may occur as

late as every 3 minutes or as frequently as whenever data has changed on the primary

server.

We simulated 3 different types of LAN connected to a “TOP COP” server that was

programmed to update the down-stream servers anywhere from 0 to 5 minutes. (The

TOP COP server is the primary point of entry for data into the WAN.) We simulated the

different basic message types the foundation was expected to process. We used the Team

Quest performance-monitoring tool to capture CPU and memory usage and process

queue length. (Team Quest was selected for its relative ease of use and easy-to-use data

analysis and reduction tools.) Our WAN had 9 servers and 15 client workstations. All

the client workstations had operators executing a set of actions and recording computer

clock-time, as did some of the servers. The operators were recruited from other DoD test

facilities; the other test organizations were interested in learning what they could about

the new software since they would be responsible for testing with it in the near future.

We did not have load-testing tools at the time and couldn’t justify the time and expense

since the duration of this test effort was relatively short. (Not enough time to acquire,

learn, and deploy any new tool in the 4-6 month window of the Tiger Team.)

The following diagram shows the laboratory setup and the roles and relationships

between the LANs.

Gail Rutherford 5 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Laboratory Set Up

CVN in FOTC/UID

STRESS1

STRESS5 FOTC11

FUN23

GATEWAY

FOTC PT

FOTC21

NETPREC

FOTC12

STRESS6

COMM4

COMM5

FUN21

USS COORDINATOR

USS PARTICIPANT

HPB2001

3.X

Time: 45

COMM1

STRESS4

FUN27
FUN22

GATEWAY CLIENT

MILSTD 2525

TMS/UCP MASTER

TOP COP

GCCS1

GCCS4

GCCS5

GCCS7

Zoom to 2000 sq. Mile area

in Northern Africa .

C
S
T

STRESS3

NEW 80
TMS/UCP MASTER

GCCS9

TMS/UCP MASTER

GCCS2

3.X

CENTAF

USAF

GCCS3

CST GROUND COMP MAST

GCCS8

ARMY HQ

ARCENT

SATELLITE SIMULATOR

COMM2

REPEAT

TRS

REPEAT

ATOX INJECTED
Time: 100
ATO: 18,000 LINES

ACO: 2100 LINES

EXPORT VIA CST TIME 130

GRENADIER BRAT DATA

INJECTED INTO GROUND COMP
MASTER

Time: 00
Updates: 1 every 10 Min

TRS DATA INJECTED INTO
THE FOTC/UID
COORDINATOR

Time: 10
via ASSET

Updates: 45 MPM

TESTTDBM INJECTED

DIRECTLY TO FOTC COORD.

10K NON- PLATFORM

Time: 00
No Updates

GOLD DATA INJECTED

VIA REPEAT INTO A
SIMULATOR VIA TTY

(SERIAL).
Time : 00
Update Rate: 60 MPM

COORDINATOR

FORWARDED TO
PARTICIPANT FOTC

BROADCAST WITH 3 MIN

INTERVAL AT TIME: 00

MISSILE TRACKS INJECTED INTO LANDSITE
Time: 75

Updates: 5 Contact reports, Launch, Launch
Update,Boost, Burnout, Impact reported by 3

sources for a total of 15 reports.

GPS SIMULATOR

INJECTED INTO MASTER
Time: 00

Update: 1 every 4 Sec.

SCTD INTERFACE INTO

 USS COORDINATOR
Time: 25

Plot Projection: 30 PPM

TRANSMIT ATO VIA
FOTC BROADCAST TO

USS PARTICIPANT

Passive LINK EDO
DATA INJECTED

INTO LANDSITE

Time: 30
Updates: None

TIBS LIVE FEED

Gail Rutherford 6 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Method:

User representatives, developers and testers were organized into a Tiger Team working in

the same laboratory for a period of four months. The original test team was comprised of

six testers, a test lead and a test director. In order to provide the quantity of testing that

we needed to accomplish testers were solicited from other DoD organizations that would

eventually be involved in testing the new system after the foundation was integrated with

the follow-on components. People were rotated through every 2-3 weeks. This high

turnover meant that the tests had to be well documented, easy to execute and make it easy

to record results.

Following is the basic organization of the test effort:

• We executed a series of tests to determine the performance baseline of the new

and deployed systems, primarily the end-user experience and the server-

processes for the core functions (communications, data fusion, mapping).

• We developed performance data for each individual component of the

foundation

o Communications

o Cartographer / Symbology display

o Data dissemination

o Additional core components (as available)

• The developers provided new deliveries every two weeks

• We re-built the foundation components into the full system one component at a

time in order to measure the effect of each component on overall performance.

• We stressed the system with user activity and increased communications input.

• We checked end-user performance using a list of standard user actions and a

stopwatch

• We monitored server and client internals using Team Quest

• We maintained a separate minimum system configuration running at all times

that would not be affected by the stress tests in order to watch the “endurance”

of the software. That is, the length of time the software runs when users or a

heavy input data load does not tax it.

The stress tests were a combination of user activities and data injections. The following

table contains some typical user actions that were measured each time a new software

delivery was made.

The endurance test was executed using a small LAN, one server and one client. The

server was preloaded with a minimum amount of data, the data injection was started at a

representative rate and the client ran Rational Robot scripts to simulate a low level of

user interaction. The processes would be checked periodically throughout the day and it

would be noted when processes stopped unexpectedly or the system became

unresponsive.

Gail Rutherford 7 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Typical User Actions

Requirement

4.x Objective

(all platforms

& track loads)

Definition

Initialization:

Reboot time from

initiation to Login

screen.

<= 105s

Reboot system (Solaris -->sysadmin

'restart' icon); measure time btwn

initiating action and when Login Screen

appears. W2K: go to Start >Restart;

time from 'OK' to Login Screen.

Login to COE

Processing complete

<= 40 sec

From login window, enter

username/password; measure time

between <CR> and Msg window 'Login

to COE Processing Complete'. Enter

total number of tracks in column to the

left.

Login to Chart Display

(Whole World)

<=120s @

10K

<= 180s @

20K

From login window, enter

username/password; measure time

between <CR> and Chart / System

ready to use (processing completed).

Launch 'Center-Width'

Pull-down Menu

selection to window

display

<= 1s

Select 'Center-Width' from Map Options

pull-down; measure time for GUI

window to appear

Launch Message Log

via Icon selection to

window display

<= 2s

Launch 'Message Log' from icon;

measure time from for GUI Window to

appear. Different between 3.x & 4.x

Logout from select to

Login Screen
<= 9 s

Solaris: from Click 'Exit' then 'OK';

measure time btwn <CR> and when

Login Screen appears. W2K: from Ctl-

Alt-Delete, measure time btwn clicking

'Yes" to Log Off window and when

Login Screen appears.

Gail Rutherford 8 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Test Results

The major results of the performance testing are summarized below. In retrospect very

little of what was discovered was “subtle” or hard to understand. The results ran the

gamut from “get more capable hardware” to having SUN Microsystems provide

engineering support for JAVA garbage collection problems.

Major problems and recommended solutions for end-user-experience:

• Long login times (3-5 minutes) depending on number of objects being

rendered on screen;

o Changed the way the software rendered and updated objects;

suggested a CONOPS where default map and number of objects is

much smaller in size.

• Minimum client configuration not powerful enough to support processing

requirements;

o Original client minimum was 256 MB RAM and 400 MHZ

processor;

o More realistic client minimum was changed to a Pentium-3

700mhz processor and 512 MB RAM.

Gail Rutherford 9 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Software Load:
ICSF+CCE/CME:

2525

ICSF+CCE/CME:

NTDS

Own Ship Only; no Track

Load W2K W2K

Step Name

Average Processing

Time

Average Processing

Time

6

Boot, login as ICSF

profiled user until map

complete 102.72 101.29

8

Relogin as ICSF profiled

user until map completes 64.90 65.56

9 Launch 2nd Chart 19.95 19.39
10 Close 2nd Chart 2.70 2.43

10,000 Track Load W2K W2K

Step Name

Average Processing

Time

Average Processing

Time

6

Boot, login as ICSF

profiled user until map

complete 191.42 168.72

8

Relogin as ICSF profiled

user until map completes 154.07 128.78

9 Launch 2nd Chart 97.18 75.12
10 Close 2nd Chart 40.98 19.96

20,000 Track Load W2K W2K

Step Name

Average Processing

Time

Average Processing

Time

6

Boot, login as ICSF

profiled user until map

complete 281.59 247.13

8

Relogin as ICSF profiled

user until map completes 245.21 209.79

9 Launch 2nd Chart 175.80 149.82
10 Close 2nd Chart 158.04 101.00

ICSF+CCE/CME:

2525

ICSF+CCE/CME:

NTDS

W2K W2K

Average Processing

Time

Average Processing

Time

101.92 101.64

65.27 66.48

21.57 21.23
3.39 2.61

W2K W2K

Average Processing

Time

Average Processing

Time

122.52 120.02

87.43 87.79

30.76 28.08
4.63 4.44

W2K W2K

Average Processing

Time

Average Processing

Time

135.96 133.20

100.30 113.41

39.73 39.99
7.68 7.15

Without filtering the display Display of objects filtered

Gail Rutherford 10 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Major problems with resource usage:

• Several processes used more than 50% of the available CPU each

o The developer was able to rework the code to push CPU usage reliably

below the 50% threshold

• Several processes had memory leaks that caused system failure after running

overnight

o In each case controlling the introduction of new programs while

monitoring the memory and CPU usage allowed specific processes to

be identified as the offenders and fixed

o Problems with JAVA garbage collection were documented so that

SUN engineers could suggest alternative switch settings and also said

we should upgrade to the new version

Gail Rutherford 11 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

0

10

20

30

40

50

60

70

80

90

100

 04/04

16:45

 04/04

16:57

 04/04

17:09

 04/04

17:21

 04/04

17:33

 04/04

17:45

 04/04

17:57

 04/04

18:09

 04/04

18:21

 04/04

18:33

 04/04

18:45

 04/04

18:57

 04/04

19:09

 04/04

19:21

 04/04

19:33

 04/04

19:45

 04/04

19:57

 04/04

20:09

%usr

%sys

stress1 SOLARIS:Process Apr 04, 2002 20:10:00 - 20:11:00

command pctcpu fullcmd

<Multi> 63.18 <Multi>

java 49.16 /h/COTS/JAVA2/bin/../bin/sparc/native_threads/java -Dafw -Xss1280k -XX:-UseComp

java 3.96 /h/COTS/JAVA2/bin/../bin/sparc/native_threads/java -Xss768k -Xmx24M -cp /h/COE/

Tdbm 2.27 Tdbm

Xsun 2.15 /usr/openwin/bin/Xsun :0 -nobanner -auth /var/dt/A:0-BlaGbb

CSTTrkDec 1.6 CSTTrkDec CSTTCP

Cartographer 0.57 Cartographer

CSTTCP 0.51 CSTTCP CSTTCP

java 0.48 /h/COTS/JAVA2/bin/../bin/sparc/native_threads/java -Dtdbm.alert -cp /h/COE/Comp

Gail Rutherford 12 of 12 4/4/2004

UNCLASSIFIED UNCLASSIFIED

Major problem of system endurance:

• System didn’t run for more than 24 hours at a time because of the CPU and

memory usage problems discussed above.

o Endurance was increased from 24 hours to 384 hours while increasing the

communications load from nil to “normal” levels

Conclusions / Recommendations

By the end of the Tiger Team effort we had not identified or fixed all the problems (either

performance or feature related). The following were some recommendations to the

sponsor for items to concentrate on:

• Addressing any remaining/new high priority trouble reports against the COE

Foundation

• JVM/garbage collection issue (excessive heap growth/memory leak)

• System login/initialization issue (excessive time from login to useable display)

• Second chart issue (time to bring-up second chart and having to close primary

chart to delete second chart)

• Complete detailed functional testing of critical add-on software components and

address all high priority trouble reports for them

• Prioritize and address priority-3 (user-interface) trouble reports and change

requests that are required by COE systems

Lessons Learned:

• Forced period of intense testing and fixing highly useful to bring together all the

groups involved solving a well-defined problem

• Using Team Quest to provide solid, repeatable, detailed information on

performance helped bring developers and testers together to solve the problem

rather than continuing an acrimonious relationship of finger pointing.

