
System Performance Testing

FUNDAMENTALS OF PERFORMANCE TESTING

Ross Collard, Collard & Company
Copyright © April, 2005

The Problem We are Trying to Solve

Today’s personal computers run a thousand times faster than IBM’s first personal
computer. Network speeds have increased even more, and database storage
costs have dropped by a factor of more than ten thousand. System performance
engineering and software optimization have advanced from a few incomplete
rules of thumb to respectable professional fields. So why bother to test system
performance and robustness?

Our story begins … You have made a heroic effort to test a system under
unreasonable deadlines and with a limited test staff and equipment. You
scrupulously ensure the features work as expected, and then release the system.
A few days later, you receive a call from a senior user. You are expecting words
of appreciation, but he can only moan about what you have done to him.

Our story ends on a sad note. The features do work, but the live response time is
way too slow and the throughput is too low. Or the system cannot handle peak
loads. The system cannot recover from routine errors, and seems to crash
whenever someone blinks. Or the system does not work on all the users'
platforms and configurations. The system worked fine in the test lab, but does
not scale up very well. Or its resource utilization is prohibitive.

If you identify with this story -- you have “been there, done that” -- and would
prefer not to re-live the experience, then this book is for you. Or if you have never
been there and want to keep it that way, this book is for you too.

Performance Testing Issues

This book examines the major issues of performance testing, such as:

1. Determining the right mix of demands to place on the system during
performance evaluation.

2. Determining what and how to measure.

3. Establishing the test environment, including scalability from the test lab to the
live operational environment.

4. Evaluation and selection of load testing tools.

5. Interpretation of performance measurements and test results.

System Performance Testing

6. The relationship between performance testing and system tuning.

7. How to determine if the system performance and robustness requirements are
realistic and testable.

8. How the testers can provide early feedback about likely performance
bottlenecks and robustness vulnerabilities during the system design and
development, instead of at the end of the project.

The Performance Testing Track Record

The majority of performance and robustness testing projects fail. Many are not
worth the time and cost, and in the worst case their results are dangerously
misleading. Testing often does not predict the live system’s behavior within a
tolerable margin of error. Conclusion: testing has a better record in heading off
catastrophic implementation decisions, by detecting under-performance in the
test lab.

Making precise predictions is a mistake. The critical outcome of testing is a one-
line recommendation: “Yes, go live” or “No, don’t”. The objective of performance
testing is to predict a system’s performance in live operation, and in a timely
fashion so that performance problems can be fixed before the system goes live.
We can make a similar point about testing a system’s robustness.

By these definitions, in my observation the majority of performance and
robustness testing projects fail. Many are not worth the time and cost, and in the
worst case their results are dangerously misleading. In these projects, the
performance testing does not predict the live system’s performance, such as its
response time and throughput, etc., within a tolerable margin of error.

Performance testing has a better track record in heading off catastrophic system
implementation decisions, by detecting gross under-performance in the test lab.
Perhaps the lack of precise predictions of performance is less important than
avoiding live performance problems.

Robustness testing is often not done as an activity in itself, with its own center
(i.e., test objectives, project staffing, etc.) Instead, oftentimes robustness is a
side issue of other types of testing and is decentralized among various people
who are focusing primarily on other interests, such as feature correctness,
database integrity, and so on.

Informal performance measurement and byproduct robustness testing have
value, but this value is highest when the system we’re testing is built like a house
of cards – no one needs subtle methods to test its limits. Various wits have
named this approach “Gone with the Wind” or “Three Little Pigs” testing, as in:

System Performance Testing

“I’ll huff and I’ll puff and I’ll blow your house down.” We do not need to measure
precisely how many meters the wind carry the house, it is sufficient to observe
that the pig is without protection.

We will explore the reasons why these types of testing fail, and what can be done
to avoid failure, in this book. In the words of Nobel prize winner Neils Bohr,
prediction is difficult, especially about the future.

The Status of Performance and Robustness Management

It is helpful to consider testing within the context of running and using a system.
Managing a system’s performance and robustness encompasses system design,
system integration, resource sizing, capacity planning, monitoring the live
operation, and system tuning, as well as testing.

Over time, the performance, robustness and cost-effectiveness of systems have
unquestionably and radically improved. Hardware costs have dropped and
continue to drop dramatically, and software prices also are declining as software
increasingly becomes a commodity.

So the need to manage performance and robustness should be declining. Who
needs performance management when the equipment costs are approaching
zero? We can just throw more "iron" at our performance problems.

Actually, we are seeing the opposite trend – a sizeable and continuing upsurge in
the demand for performance and robustness management. One reason is the
voracious growth in the demand for services, which shows little sign of slowing in
the next five to ten years. Another reason: many software packages and
components suffer from creeping feature-itis and become “bloatware”, exhibiting
worse performance with each new release.

Probably the major reason for this upsurge is the complex and fluid nature of
today’s multi-technology, multi-vendor distributed systems:

o System integration has become a major field in its own right, and
performance and robustness are not easy to predict when we bring products
from different vendors together.

o Every system is unique in the galaxy – nobody else has compiled quite the
same mix of hardware, networks, databases, support software and applications.
Like it or not, this is like Star Trek, “going where no person has gone before”.

o We do not have good conceptual models with which to understand how
subsystems interact, interfere and otherwise behave within systems of even
moderate complexity. The traditional, centralized approach to managing a single-
platform system like a mainframe does not work very well in decentralized

System Performance Testing

environments.

o Vendors test their own products (maybe), but there is little or no
integration testing across vendors.

o The skills needed to monitor and tune systems are fragmented, which
each group of specialists only seeing part of the picture. When tuning decisions
are made at the subsystem level and are not well coordinated, it is easy to de-
tune a system and not know it.

o The tools available for monitoring and tuning systems are equally
fragmented. Usually no one tool can tell us everything we need to know to
manage the system, and the readings available from the different tools are
difficult to correlate into a coherent picture. (Despite some tool vendors’
wonderful claims.)

o The knowledge base for managing systems must continually evolve, and
often reactively, because of frequent upgrades, changes to the architecture and
interfaces, and advancing technology.

Managing performance and robustness is certainly not impossible but it is
challenging.

As the demand has grown for better management, the testing has become even
more prominent within the whole area of managing performance and robustness,
because of the shortcomings I have mentioned here.

Basic Definitions and Concepts

Performance testers use a wide diversity of names for the same concepts, and
the same word often is used for several different things, indicating the immaturity
of the field. We have no universal consistency in how people use terms like
performance test and robustness test. I can say that the definitions provided in
this book are as much or more in the mainstream as any others.

What do we mean by the following terms? Performance engineering vs.
management vs. testing; load vs. stress; robustness; response time vs.
throughput; operational profile vs. benchmark vs. baseline; concurrency;
scalability vs. bottleneck; self-tuning system; and service level agreement? For
now, we will define just enough to get started (with the rest coming later).

Basic Terms

A system’s performance is its speed or responsiveness, its ability to handle loads
and its efficient use of resources. The load or work load is the mix of demands
placed on a system.

System Performance Testing

Performance engineering is the field of defining performance requirements, and
designing and implementing systems to meet these requirements. Performance
management is monitoring and troubleshooting on-going performance in live
operation.

Definition of Performance Testing

The purpose of performance testing is to measure a system’s performance under
load. As Humpty Dumpty said, a word can mean whatever one chooses it to
mean, so it is worth our time to examine what we mean by the words “measure”,
“performance” and “load”.

Performance testing is a measurement of performance characteristics, although
sometimes the use of the word “testing” confuses people. Some performance
professionals feel strongly that it is important to not use the term “performance
testing”, but to call it performance measurement instead. They are concerned
that this measurement will get confused with feature testing and debugging,
which it is not. They point out that measurement is only testing if the collected
measurements are checked against pre-established goals for performance, and
that measurement is often done without preconceptions of required performance.

These people have a good point: clarity of terminology is important. But since
most people use the term “performance testing” we will go with the majority and
use it too.

The term performance can mean response time, throughput, availability, error
rate, resource utilization, or another system characteristic (or group of them),
which we are interested in measuring. “All promise outruns performance.” Ralph
Waldo Emerson

Performance testing simulates the typical user experience under normal working
conditions. The load is a typical, representative mix of demands on the system.
(And, of course, there can be several different representative loads -- the work
load at 2 p.m., at 2 a.m., etc.) Another name sometimes used for a performance
test is a capacity test, though there is a minor difference in these terms as we will
see later.

First, the performance testers need to define what the term performance means
in a specific test situation -- that is, what the objectives are and what we need to
measure in the test.

The answer to this question is that we measure performance usually as a
weighted mix of three characteristics of a system: throughput, response time and
availability. In real-time systems, for example, the users need a guarantee that a
task will always be completed within a fixed time limit. Performing a task

System Performance Testing

correctly but a millisecond too late could literally be fatal.

The term load simply means the mix of demands placed on a system while we
measure its performance and robustness characteristics. In practice, most loads
vary continually, so later we will address the challenge of determining the most
appropriate load(s) for testing. The terms work load and benchmark are
sometimes used as synonyms for load. A benchmark usually means a standard
load, one used to compare the performance of systems, system versions, or
hardware environments, but the benchmark is not necessarily the actual mix of
demands at any one user installation. The term work load is a synonym for a
load, and you see both of the terms in this book: they are interchangeable.

Definition of Load Testing

In contrast to a performance test, a load test is a measurement of performance
under heavy load: the peak or worst-case conditions. Because loads can have
various sizes, more precise terms for this type of testing are peak-load testing or
worst-case-load testing.

A performance test usually is done with a typical, representative load, but this
measurement may not tell us much about the system’s behavior under heavy
load. For example, let’s assume that the peak load on a system is only 15%
more than the average load. The system performance may degrade gracefully –
the system runs 15% slower at peak load. Often, though, the performance under
load is non-linear: as the load increases by a moderate amount (in this case,
15%), the response time does not increase by a comparable percentage but
instead becomes infinite because the system fails under the increased load.

The reliability goal (MTBF) determines the horizontal time duration, which
determines the peak load for testing. An imprecise shortcut: multiply the average
load by a fixed factor – 3 to 5 times more for client/server; 10 to 25 times more
for Web sites with sudden spikes.

The idea is to impose an unreasonable load on the system, an overload, without
providing the resources which the system needs to process that load. In contrast
to a performance test, a load test measures performance under heavy load: the
peak or worst-case conditions.

Definition of Stress Testing

A stress test is one which deliberately stresses a system by pushing it beyond its
specified limits. The idea is to impose an unreasonable load on the system, an
overload, without providing the resources which the system needs to process
that load.

In a stress test, one or more of the system resources, such as the processor,

System Performance Testing

memory, or database I/O access channel, often “maxes out” and reaches
saturation. (Practically, saturation can happen at less than 100% of the
theoretical usable amount of the resource, for many reasons.)

This means that the testware (the test environment, test tools, etc.) must be
sufficiently robust to support the stress test. We do not want the testware to fail
before we have been able to adequately stress the system.

Many bugs found in stress testing are feature bugs which we cannot see with
normal loads but are triggered under stress. This can lead to confusion about
the difference between a feature bug and a stress bug. We will address this
issue in the upcoming section entitled: “Testing Performance and Robustness
versus Features”.

Some testers prize stress testing because it is so fruitful in finding bugs. Others
think it is dangerous because it misdirects projects to fix irrelevant bugs. Stress
testing often finds many bugs, and fixing these bugs leads to significant delays in
the system delivery, which in turn leads to resistance to fixing the bugs. If we
find a bug with a test case or in a test environment which we can’t connect to
actual use, people are likely to dismiss it with comments like: “The users couldn’t
do that”, “.. wouldn’t do that” or “... shouldn’t do that.”

Stress, Robustness and Reliability

Although stress, robustness and reliability are similar, the differences among
them mean that we test them in related but different ways.

We stress a system when we place a load on it which exceeds its planned
capacity. This overload may cause the system to fail, and it is the focus of stress
testing.

Systems can fail in many ways, not just from overloading. We define the
robustness of a system by its ability to recover from problems; its survivability.
Robustness testing tries to make a system fail, so we can observe what happens
and whether it recovers. Robustness testing includes stress testing but is
broader, since there are many ways in which a system can fail as well as from
overloading.

Reliability is most commonly defined as the mean time between failure (MTBF) of
a system in operation, and as such it is closely related to availability. Reliability
testing measures MTBF in test mode and predicts what the system reliability will
be in live operation.

Robustness and reliability testing are discussed in the companion volume to this
book, entitled “System Robustness Testing”.

System Performance Testing

Work Load and Work Flow Testing

A work load is a mix of demands on a system. The term work flow is sometimes
used to mean the same thing, or we simply call it the load. Depending on the
situation, these demands can be events, transactions, queries, interrupts, or
other demands, or a mix of these.

We could claim that by this definition any mix of demands qualifies as a work
load– and it does. The critical question is what the work load represents.

Having the appropriate test work load (or more likely, set of related work loads) is
crucial, because most system characteristics can vary significantly with the work
load – performance, reliability, and so on.

This means that the critical success factor for a work load is realism. If the work
load used in testing is reasonably close to the work load of a particular user, then
we can say with confidence that the conclusions formed by testing in our lab are
likely to apply to that user. If not, it is anybody’s guess how well the lab findings
predict what will happen in that user’s environment.

The term “work load” test does not imply any particular set of test objectives or
measurements (though internally an organization might use the term as a label
for their own particular flavor of testing) Depending on what we want to
accomplish, a work load can be used in many different types of testing. For
example, we could run a work load while we measure the system’s performance
(response time, throughput, availability, etc.) Or we could run a heavy work load
to stress the system, attempt to overload it and see if it recovers from failures.

Work loads are used in interoperability testing (checking if subsystems connect
and communicate), configuration testing (checking if features are compatible
across different system versions, and across different support hardware,
databases and networks), and so on.

A complicating fact is that many systems are highly configurable – they can be
modified through changes in switch settings, patches and upgrades to behave
differently, and can run with different variations of hardware, etc.

Another complication is the huge number of users of a major system, such as an
operating system (OS) from a major vendor, all of whom use the system in their
own ways. We need a scheme to manage the numbers of variations of support
environments, system settings and system uses.

The common way to resolve being overwhelmed by the number of variations is a
categorization model, which allows us to group together similar users by type of
work load (usage pattern) and by type of support environment.

System Performance Testing

Dependability

The term “dependability” is often used to summarize the degree to which we can
rely on a system. This term is broader than just reliability and recoverability – it
encompasses security, safety and data integrity too.

Operational Profile

An operational profile (OP) is a list of the demands placed on a system, together
with frequency of occurrence for each one. Depending on the situation, the
demands could be events, transactions, messages, database accesses, etc. The
operational profile of the test load should match the profile expected in live
operation.

Benchmark

A benchmark is a standard work load which used in testing, instead of one based
on an OP. Benchmarks are often industry-wide, e.g., the TPC-C and TPC-W
benchmarks. Benchmarks can be used where OPs are not available, infeasible
to build or not trusted. Benchmarks are convenient, but the question is how well
the benchmark can substitute for an OP – how well it represents reality.
Benchmarks are best used for a comparison of two or more systems’ behavior
under the same load, or system versions’ behavior.

Baseline

The most common use of the term baseline is the measurement of the
performance of an existing system or operation, as the “before” part of a before-
and-after comparison. We measure the baseline in a live environment which will
disappear (or at least be modified), when the change is implemented. The
baseline helps us understand the current behavior if the metrics available are
informal, anecdotal (“it runs slowly”), untrustworthy or politicized, and if it is
important to later show evidence of the claimed improvements caused by the
change.

Concurrency

Concurrency is the occurrence of two or more events at the same instant or
during the same brief time interval. If events are not simultaneous, to be
considered concurrent they should occur closely enough in time to have a non-
trivial chance of competing for the same resources, or of interacting and possibly
interfering with each other.

	FUNDAMENTALS OF PERFORMANCE TESTING

