SONY
make.beleve

Functional testing with load

Liang Peng
Performance Engineer
April 2011

CONFIDENTIAL Copyright 2011 Sony Network Entertainment

SONY
make.beleve

Outline

 Background

e Load testing approaches in functional testing

— Story1: Finding performance defects in functional
testing

— Story2: Adjust load testing approaches in
functional testing

— Story3: Finding functional defects with load
testing

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 2

SONY

maoke.belleve

Background — The Apache Threshold

Module (ATM)
e What is ATM

e Why do we need this ATM

[Web N Business

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 3

SONY

Background — The Apache Threshold '""“"""“
Module (ATM)

e Why do we need this ATM

— To control the traffic when it goes beyond the
capacity that the system can handle

e Based on throughput/threshold
e Based on URLs
e Based on session durations

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 4

SONY
make.beleve

How does ATM work

lo
COESS J

transaction

* |t makes fixup and handler the first in dataflow
* |t makes log_transaction the last in dataflow

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 5

SONY

maoke.belleve

How does functional testing ATM
depend on load testing

 We need load testing approaches to simulate
the loaded environment in which ATM will be

working

e More about the load

e HTTPS requests
* No sessions are created yet
e Load generated by HP using LoadRunner 9.5

e The tested Apache/ATM in dedicated host and not
connected to the architecture/platform yet

3

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 6

SONY

maoke.belleve

Story #1: Finding a performance defect
in functional testing

e Statistics Table in ATM

 From perspective of functional testing, we
want to test if ATM works when the statistics
table is full (empty and half full cases too, of
course)

IAL Copyright 2011 Sony Network Entertainment 7

SONY

maoke.belleve

Story #1: Finding a performance defect
in functional testing

e Test cases (table size is 2048):
— With only one URL requests (table very empty)
— With 1024 URL requests (table half full)
— With 2048 URL requests (table full)

 Conducting the tests:

— Clearing the table by restarting apache (with ATM)
— Run tests with certain number of URLs (1, 1024,
and 2048)
e The ATM state changes works well ‘
(functlonally)

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 8

SONY
make.beleve

Full table tests results:

10000 0.03
8000 0.025
6000 0.02
0.015
4000 0.01
2000 —i— A —
/ 0.005
0 0
0 20 40 60 0 20 40 60
== Throughput (empty table) =¢—Response Time (empty table)
Throughput (half full table) Response Time (half full table)
== Throughput (full table) =#—Response Time (full table)

Why the more full the table, the lower
achievable throughput and higher latency?

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 9

SONY
make.beleve

A little bit more details of
implementation

e The URLs in table are stored in an array

* For every single new request, ATM search the
table and see if it’s already in table

e |fit’s already in table, update statistics

e Ifit’s notin table, add a new entry to the table
for this URL

3

IAL Copyright 2011 Sony Network Entertainment 10

SONY
make.beleve

Here’s the problem:
e There are a lot of search/comparisons in table

e String comparison/matching/search could be
time consuming, especially when the string is
not short

e When the string is an URL, it can easily go up
to 50 characters, the worst case is to compare
the entire URL with each existing element

 For alarge number of URL requests to the
same website, the chance for the URLs to be
different in tail is very high, and this is the
worst (or close to worst) case scenario ‘

IAL Copyright 2011 Sony Network Entertainment 11

SONY
make.beleve

Suggestion:
 Change the data structure of the table, or

 Implement the table search in a more efficient
way

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 12

Story #2: Adjust load testing —
approaches in functional testing

* In functional testing the state change from
normal to iplock, we need to verify when the
system under load, changing ATM from
normal to iplock will block all of the traffic

IAL Copyright 2011 Sony Network Entertainment 13

SONY
make.beleve

Executing the test:

e Set ATM in normal state
e Send out load to Apache/ATM

* When keep sending out load, change ATM
state from normal to iplock

e Verify that all requests are blocked

IAL Copyright 2011 Sony Network Entertainment 14

SONY

maoke.belleve

Test results:

1,000
900
500

V00

ctions

500

500

400

Murnber of Transa

300

200

100

D _q. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
T T T T T T T T T T T T T T T T T T T T
00:00 0015 00:30 00:45 01:00 01:15 01:30 01:45 0200 0215 0230 0245 0300 03:15 0330 0345 0400 04:15 04:30 O4:45 05:00

Elapsed scenario time mm:ss

When all requests pass, the throughput is about
1,000/s. iplock works. However when all
requests fail, the throughput much less. Why? ‘

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 15

SONY
make.beleve

Making use of load testing
methodologies in functional testing

e Tried to increase the throughput from 1,000/s
to 10,000/s (by using more virtual users) but
still seeing similar results: fail throughput

much less, and the ratio of failure rate vs. pass
rate is roughly same.

IAL Copyright 2011 Sony Network Entertainment 16

SONY
make.beleve

Making use of load testing
methodologies

* Looking at the structure of load testing script:

 Main Action{
// preparation work

For (i=0;i<10; i++){
call_http_request_action();

}

}
* Inload testing, sometimes we iterate for ‘
NNNNNNNNNNNN more-timesto-help increase throughput

SONY
make.beleve

Making use of load testing
methodologies

e However when ATM in iplock state, all
requests failed and the iteration will not
continue upon failure

* Upon failure, the control logic goes to the next
iteration of the entire action instead of next
loop within the action

e That’s why we see failure throughput is less
than pass throughput

3

IAL Copyright 2011 Sony Network Entertainment 18

SONY

maoke.belleve

See what happen when | don’t iterate

They are roughly at same level now:

Transa ctions per Second

1,100

1,000

Murnber of Transactions
oy
(]
(]

Elapsed scenario time mm:ss

Failure throughput is still slightly less than pass
throughput because failure response is bigger ‘
Size

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 19

SONY

maoke.belleve

Issues in applying load testing
methodologies in functional testing

e It’s not a one time thing
e Pass rate vs. failure rate

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 20

SONY
make.beleve

Store #3: Performance testing reveals

functional defect
e \ersa server resource usage problem

e A little bit background:

Versa Backend

Server Server
Harison Ford, ... response

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 21

Request
(Indiana Jones)

SONY
make.

Story #3: Performance testing reveals

functional defect
 What we want to do: performance

characterization

e Executing the tests:
— HTTPS requests with some parameters

— Load is sent out by using LoadRunner (ramp up
from light load to heavier load)

— In the mean time monitoring client side
throughput and server side resource usage

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 22

SONY
make.

Story #3: Performance testing reveals
functional defect

— At light load (say, 5/s), everything looks fine

— When increase load to certain level (>5 to 10/s),
system becomes not stable:
* CPU 100% usage
* Not responding to requests

— Only restarting the server can bring it back to
normal status

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 23

SONY
make.

Story #3: Performance testing reveals
functional defect

e The server saves a lot of contents in cache

e Upon request, it first see if it’s already in
cache

 The contents in cache are organized with a
HashMap

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 24

SONY

maoke.belleve

Performance testing reveals functional
defect

e |t turns out that it went into an infinite loop
with Java HashMap, due to unsynchronized
use of it

e Some people declare that it’s a known issue
and ConcurrentHashMap resolves this issue

o After the developer synchronized accesses to
the cache, the issue was resolved

3

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 25

SONY
make.beleve

Takeaways

e There are two situations where functional
tests need performance test approaches
(there could be other situations, of course)

— The functionality is about controlling/adjusting
network traffic

— The functionality is about handling a number of
requests within certain period (potential
concurrency/parallelism)

* Functional testing can find performance

defects, and performance testing can also ‘
possibly find functional defects.

CONFIDENTIAL Copyright 2011 Sony Network Entertainment 26

