
From Functionnal to Performance
The easy way…

Presented by
Raymond Rivest
Advisor, Test Specialist
CRIM, Center for Test and Interoperability

Presented at WOPR 16

April 2011

Partenaire financier :

2

The project

• An Insurance Software Developer needed to have its software evaluated
by a neutral organization for a sale

• Proof of concept aimed towards a LoadTest Tool

• 300 Active connexions (users logged in)

• 5 years database history

• Customer records with ‘2008’ CustId = 9872.0

• Policy Transactions for ‘2008’ CustId = 26464.0

• Average Policy Transactions for these Customers 2.68

• Average Policy Transactions per week 508.92

• Average Policy Transactions per day 101.79

3

Let’s get started

• Underlying protocol is COM/DCOM

• 1500 lines of code for a single login script

• Code is messy and barely replays

• Time needed to fix every transaction will be huge

• Way out of the initial POC

4

Back to the maths

User Types Volumes
Raw

numbers

Per business

days
Per Hours

Per Employee

Per Hour

Time per

transaction

(Base numbers & units) 255 BD 7 per days (Minutes)

1. Customer personal lines (125 employees) in 10

modules of 3 person groups handling specific clients

12% of NBS on a total of 100 000 policies

in the last year which means 88% of

renewal in the daily process.

100000

(88%)
345,0980392 49,2997199 0,394397759 152,130682

100000

(12%)
47,05882353 6,72268908 0,053781513 1115,625

2. Customer Commercial Lines(140 employees) in 2

modules (over $5000 and under $5000)

13 873 policies + 1781 bounds , 16% of

NBS last year in all the revenue of the

department.

13873+1781

(84%)
51,56611765 7,36658824 0,052618487 1140,28363

13873+1781

(16%)
9,822117647 1,40315966 0,010022569 5986,48908

3. Customer Accounting (20 employees)

4. Customer - Intact affiliation (90% of policies are

with Intact)

**Time per Transaction = Theoretical time per transaction (according to transactions per hour per employee)

5

Functionnal to Performance

** First run had another 14*10 VM connected to achieve the 300 active connexions.. As it did not

made any change, focus was set on the transaction rate.

6

Some porn

7

How it goes…

• In essence, over 300 Virtual PCs, on which a Functional Scripting Tool (Test Complete
7.10) was performing User Actions at a specific rate.

• For each PC, the scripts would perform actions (field change, pane change, listbox
selection) within 1 second, key rate was at 0.5 seconds and New Window wait time
was maxed at 25 seconds, leaving little margin for response time degradation.

• In order to achieve the required load with the hardware limitation of the test bed,
transactions duration were reduced to the shortest possible time. By compressing
transaction time, less active users were required to achieve the full load. A session
was performed with the following:

• 14x10 Idle logged in users (140 connected but inactive)

• 19 Customer+Policy+Billing Creators (1 per 10 minutes each)

• 5 Search&Edit (1 per 5 minutes each)

• 3 Reporters

• - Bill printing (1 per 10 minutes)

• - Production (1 per 15 minutes)

• - Balance report (1 per 15 minutes)

• 5 Login/logout (1 per minutes each)

8

More porn

9

End result

• Target load achieved (and a live view of response time)

• A happy customer (Made the sale and end customer has been
running for 2 years without performance glitch)

• Within planned budget (Happy management)

• Reusable scripts for Customer’s Acceptance Tests (Repeat
business)

• Customer is coming back for a new project…

10

Drawbacks

• Scalable up to a certain limit

• Hardware needed per VM (How many..)

• Runtime licenses (Not all tools have it, $$)

• Need rock-solid scripts

• Not like WEB

• Rely on the GUI

• Man Power to watch the test bed

