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Current State of the Practice

• What is the Most Robust Software?
– MTBF: 40 years; MTTR: 4 hours
– Average time to trigger a failure: 900 years
– Defect delivery ratio of 99% to 1

• How Much Does it Cost?
– Testing is 90% of budget
– Instrumentation is 70% of code
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TKQ (the key question)

• The key question to ask during software 
development and modification is: What 
could go wrong???

• This implies we need a conscious fault 
model or theory of errors.
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Major Causes of Defects: 
(1) Specifications
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• Failure to understand who the client is

• Failure to address the right issues

• Lack of sufficient client/user involvement

• Lack of readability

• Ambiguity 

• Inconsistency

• Omissions



Major Causes: (1) Specs

• Imprecision; vagueness and lack of detail

• Unstated or buried assumptions

• Factual errors

• Unrealistic assumptions

• Technical feasibility (i.e., specifying 
features which cannot easily be built)

• Volatility; lack of change control on specs
Copyright 2004 -- Collard & Co. 5



Major Causes of Defects: 
(2) Design
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• Lack of fit to functional specifications

• Expansion of the scope; over-engineering

• Poor change control

• Not modular and top-down

• Structure is not well engineered; e.g., fan-
in or fan-out is too high

• “Spaghetti”, entangled linkages of 
components



Major Causes: (2) Design

• Technically too aggressive or technically 
obsolete

• Insufficient detail on which to build a product

• Product “illities” not sufficiently addressed (e.g., 
maintainability usability)

• Internal and external interfaces are not 
adequately defined

• Resource use constraints are not defined
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Major Causes: (2) Design
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• Few methods to prevent, detect or recover 
from defects

• Testing & maintenance needs not met

• Software design is not visible, flexible, 
robust nor fault tolerant

• Lack of integration with the existing 
technical environment and business 
operations



High-Level Design Validation

• Does the system design fulfill the 
requirements?  

• Can we walk through the design, step by 
step, to show how each individual 
requirement be satisfied, and how?  

• Is the design over-engineered (more than 
the requirements call for)?
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High-Level Design Validation
• Will the design meet performance, reliability, 

back-up and recovery, maintainability, security 
and control, scalability and usability goals?

• Can this design be built?  Is it feasible in the 
technical environment and with the resources 
(people, tools, etc.) available?

• Does the design adhere to commonly accepted 
standards for design quality?  (I.e., modularity, 
coupling, etc.)

Copyright 2004 -- Collard & Co. 10



High-Level Design Validation

• Are the interfaces among the subsystems 
and among the components (control flows, 
data flows and shared data such as 
tables), specified correctly?

• Are all components labeled and identified 
so we know what they do?  
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High-Level Design Validation
• Is the overall purpose of each individual 

component clearly described, and is it 
appropriate?

• Is the design visible, i.e., can we trace 
through the design to review how the 
system works in performing some overall 
user function?

• Is the system testable?  (See later for a 
discussion of designing for testability.)
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Low-Level Design Validation

• Does this component-level design match 
the high-level design, and serve its 
functions?

• Does each component deliver its required 
functions?  Is the description of the 
internal component algorithm or 
processing correct?
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Low-Level Design Validation

• Can existing components be adapted and 
re-used, instead of creating new ones?

• Does each component comply with the 
internal inter-component interfaces, as 
described in the  high-level design?
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Low-Level Design Validation

• Are the data structures defined correctly 
and used correctly by the components?

• Is the design under change control, with all 
new or modified components and 
interfaces identified clearly?
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Low-Level Design Validation

• Does the detailed design provide sufficient 
information for the programmers to build or 
modify the system?  Is this information 
readable, understandable and 
unambiguous in the eyes of the 
programmers?
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Design Rules of Thumb

• Cyclomatic complexity of components 
should not exceed 10.

• Depth of nested-if decision logic <= 7.

• The depth of inheritance chains <= 7.

• The length of module calling chains <= 7.

• The average fan-out of the modules in a 
design <= 7.
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Contradictions in
Managing Complexity

• There are several inherent contradictions 
in the rules of thumb which are used to 
manage the complexity of a software 
architecture.

• If the complexity of components is capped 
at 10, this means that there will a greater 
volume of components, so that it will be 
more difficult to meet the other guidelines.
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Basics of Effective Design

• Readability

• Completeness

• Visibility

• Modularity

• Cohesiveness

• Decoupling
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Basics of Effective Design

• Traceability

• Necessity

• Consistency

• Feasibility

• Efficiency

• Portability

• Re-use Copyright 2004 -- Collard & Co. 20



Designing for Robustness

• Where can an error occur in the use of a 
system? 

• At each particular point in operation, what 
kinds of errors could occur? 

• Which possible errors are most critical 
versus merely a nuisance?

• How can these errors be detected?
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Designing for Robustness

• What alternative actions could be taken in 
reaction to each possible error? 

• How can errors be contained and not 
propagate: their side effects are kept to a 
minimum?
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Designing for Robustness

• Controlled use of common routines and 
working storage areas?

• Separate or decoupled processes for 
activities which operate independently?

• Simplicity of design, the most 
straightforward performance of functions?

• Simplicity of documentation, access and 
understanding?
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Designing for Robustness

• Simplicity of the interfaces?

• Continual monitoring and recording logs?

• Automatic error detection & diagnosis?

• Built-in error recovery?

• Visibility of actions?
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Types of Error Handling

• Error avoidance tries to detect and 
neutralize embedded, "sleeping" errors 
before they become activated. 

• Error masking uses redundant information 
to cross-check and deliver the correct 
service regardless of errors.  
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Types of Error Handling

• Back-up processes periodically preserve a 
known correct state of a system for 
possible later use in recovery.  

• Roll-back mechanisms can be used to 
return to this correct state, and the 
recovery process then proceeds.
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Error Recovery Mechanisms

• Automatically logging a copy of every 
transaction and before-and-after 
snapshots of updated stored data. 

• Suspending an input transaction for later 
manual review, correction and re-
submission.
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Error Recovery Mechanisms

• Re-starting a system from a checkpoint. 

• Checking the automatic switch-over to 
redundant back-up systems. 

• Ensuring that the error messages and 
procedures are clear and usable by the 
people who have to work with them.
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Software vs. Hardware 
Reliability

• Software reliability differs from hardware 
reliability, as software failures do not occur 
because of  physical components age and 
wear out.
– Hardware degrades over time because chips 

fry, pins are broken off connectors, cables 
fray and become electrically conductive, and 
so on.  

– Software cannot physically break.
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Software vs. Hardware
Reliability

– Another important difference is that hardware 
tends to be highly stable after manufacturing, 
with little change.  By contrast, software 
continues to grow and evolve.  

– As software ages, the primary cause of failure 
becomes the modifications made to the 
software. (This concept is called software 
entropy.)  
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Fault Tolerant Systems

• Planned-in Redundancy

• Concurrent Parallel Processes

• Monitoring Processes

• Roll-Back Mechanisms

• Fault Tolerant Communications
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Fault Tolerant Systems

• Fault Tolerant Data Bases (e.g., Mirroring)

• Self-Tuning Systems

• Self-Healing (Autonomic) Sysyems
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Designing For Scalability

• Scalability is the capability of a system to 
continue to expand or contract as the 
needs change, and to provide acceptable 
service as the demand or resources 
change.
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Designing For Maintainability
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• (1) Quality of documentation.

• (2) User demands for enhancements.

• (3) Competing demands for the time of the 
software engineers assigned.

• (4) Meeting scheduled commitments.

• (5) Inadequate training.

• (6) Turnover in the organizations.



Designing For Maintainability

• According to a study by the Software 
Engineering Institute, programmers 
introduce inadvertent new errors in 20% to 
50% of all systems changes.  

• (To be fair to maintenance programmers, 
many of these defects are minor and are 
caught almost immediately in compilation 
and unit testing.)
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Advantages in Working
with Existing Software

– Static code analyzers (path analyzers) can be 
used to analyze the existing software.

– The system has already been heavily "field 
tested" in production use and with real users.

– The prior operational experience with the 
system and prior defects are known.

– Test data and facilities should be available.
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Disadvantages easily
can Outweigh Advantages
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– The people who really understood the system 
have disappeared years ago.

– Seemingly simple and small changes to 
existing systems can have unanticipated and 
devastating side effects.  

– Existing systems are often poorly understood, 
a source of mystery to the people charged 
with maintaining them and even to the day-to-
day users. 



Disadvantages

– Not only are the design and code inscrutable, the 
person who made the last few years' worth of patches 
before disappearing apparently was a devotee of 
voodoo.

– Because of the demand for fast turn-around times for 
fixes or enhancements, there may be little time to 
plan and develop tests.

– Existing documentation, such as the systems 
technical description and the prior history of changes, 
often is close to unusable.
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Designing For Usability

• User-Centered Design

• Ease of Learning

• Ease of Use

• Error Processing

• Usability Error Checklists
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Designing For Testability

• To be testable, a system has to be 
observable and controllable. 

• Just as systems can be designed to 
exhibit desirable characteristics such as 
maintainability and usability, they can be 
designed for testability.\
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Software Re-Use
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• In its simplest form, software re-use is the 
process of assembling and adapting 
existing components.

• Extensions of the useful life:
– Software Re-Engineering
– Data Re-engineering
– Refactoring



Major Causes Of Defects: 
(3) Programming

• Unstructured, highly coupled code

• Lack of fit to specifications (difficult to 
avoid if the specs. are poor)

• High complexity

• Use of obscure language features

• Violations of programming standards
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Major Causes: (3) Programming

• Hard-coded data values
• Insufficient change & version control, and 

quick, ill-considered patches
• Lack of fault tolerance and robustness
• Inflexibility  (code was built without 

consideration for system maintenance)
• Computations and comparisons which use 

inconsistent data
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Major Causes: (3) Programming

• Data initialization (failure to explicitly 
initialize or re-set)

• Shared data (accessed or updated by 
more than one module or program)

• Pointers and indexes that could exceed 
their expected ranges

• Possible field overflows (e.g., result field 
smaller than largest value)
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Major Causes: (3) Programming

• Incorrect interface assumptions (e.g., a 
wrong set of parameters is passed)

• Entangled or “sloppy” loops

• Unintended fall-through conditions

• Nested conditions (e.g., ifs)

• Memory leaks
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The Personal Software 
Process (PSP)

• “Developing software products involves 
much more than just stringing 
programming instructions together and 
getting them to run on a computer.  It 
requires meeting customer requirements 
at an agreed cost and schedule....[PSP] 
shows you how to do this.” Watts 
Humphrey
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The PSP

• Personal responsibility (e.g., committing to and meeting 
deadlines)

• Personal commitment to quality

• Time management skills in the individual programmer, 
including:
– Analyzing time consumption. (“Where did the time go?”.)\
– Personal planning. (“What do I need to do to accomplish this 

goal?”.)
– Estimation. (“How big is this task?.)

• Defect prevention skills
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Incident Analysis

• "Those who do not understand history are 
condemned to repeat it."  George 
Santayana

• An organized method for learning from 
defects in order to prevent the occurrence 
of future similar defects.  

Copyright 2004 -- Collard & Co. 48



Incident Analysis

• An analysis is performed and circulated for each 
defect, and this analysis addresses the following 
questions:

• How & when was the defect found?

• When was the defect made?

• Who made the defect?  (this should only be 
asked if the environment is a trusting one.)

• Why and how was the defect caused?
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Incident Analysis
• What triggered the detection of the defect, or 

initiated or enabled its occurrence?
• Why was the defect not discovered earlier?
• How could the defect have been prevented?
• How can we prevent similar defects in the 

future?
• Where else might this same defect or similar 

defects be embedded, and how can we find and 
remove them?
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Walkthrough Guidelines

• Walkthroughs occur continually throughout 
a project

• No walkthrough is longer than 2 hours

• Do homework prior to walkthrough

• Egoless peer review: criticize work 
product, not author

• Moderator keeps focus & pace
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Advantages of Walkthroughs
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• Can find defects very early

• Communication device within the team

• Expectation of peer review increases task 
quality

• Helps track & ascertain project status

• Builds involvement in the project

• Can help build team spirit



Advantages of Walkthroughs

• Promotes consistency

• Shares expertise

• Trains people early in the functionality and 
design

• Identifies opportunities for improved 
practices
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Next Steps

• Which ideas are valuable to you?

• How can you apply them?

• What support do you need?
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