
BUILDING ROBUST
SOFTWARE

Ross Collard

Collard & Company

Current State of the Practice

• What is the Most Robust Software?
– MTBF: 40 years; MTTR: 4 hours
– Average time to trigger a failure: 900 years
– Defect delivery ratio of 99% to 1

• How Much Does it Cost?
– Testing is 90% of budget
– Instrumentation is 70% of code

Copyright 2004 -- Collard & Co. 2

TKQ (the key question)

• The key question to ask during software
development and modification is: What
could go wrong???

• This implies we need a conscious fault
model or theory of errors.

Copyright 2004 -- Collard & Co. 3

Major Causes of Defects:
(1) Specifications

Copyright 2004 -- Collard & Co. 4

• Failure to understand who the client is

• Failure to address the right issues

• Lack of sufficient client/user involvement

• Lack of readability

• Ambiguity

• Inconsistency

• Omissions

Major Causes: (1) Specs

• Imprecision; vagueness and lack of detail

• Unstated or buried assumptions

• Factual errors

• Unrealistic assumptions

• Technical feasibility (i.e., specifying
features which cannot easily be built)

• Volatility; lack of change control on specs
Copyright 2004 -- Collard & Co. 5

Major Causes of Defects:
(2) Design

Copyright 2004 -- Collard & Co. 6

• Lack of fit to functional specifications

• Expansion of the scope; over-engineering

• Poor change control

• Not modular and top-down

• Structure is not well engineered; e.g., fan-
in or fan-out is too high

• “Spaghetti”, entangled linkages of
components

Major Causes: (2) Design

• Technically too aggressive or technically
obsolete

• Insufficient detail on which to build a product

• Product “illities” not sufficiently addressed (e.g.,
maintainability usability)

• Internal and external interfaces are not
adequately defined

• Resource use constraints are not defined
Copyright 2004 -- Collard & Co. 7

Major Causes: (2) Design

Copyright 2004 -- Collard & Co. 8

• Few methods to prevent, detect or recover
from defects

• Testing & maintenance needs not met

• Software design is not visible, flexible,
robust nor fault tolerant

• Lack of integration with the existing
technical environment and business
operations

High-Level Design Validation

• Does the system design fulfill the
requirements?

• Can we walk through the design, step by
step, to show how each individual
requirement be satisfied, and how?

• Is the design over-engineered (more than
the requirements call for)?

Copyright 2004 -- Collard & Co. 9

High-Level Design Validation
• Will the design meet performance, reliability,

back-up and recovery, maintainability, security
and control, scalability and usability goals?

• Can this design be built? Is it feasible in the
technical environment and with the resources
(people, tools, etc.) available?

• Does the design adhere to commonly accepted
standards for design quality? (I.e., modularity,
coupling, etc.)

Copyright 2004 -- Collard & Co. 10

High-Level Design Validation

• Are the interfaces among the subsystems
and among the components (control flows,
data flows and shared data such as
tables), specified correctly?

• Are all components labeled and identified
so we know what they do?

Copyright 2004 -- Collard & Co. 11

High-Level Design Validation
• Is the overall purpose of each individual

component clearly described, and is it
appropriate?

• Is the design visible, i.e., can we trace
through the design to review how the
system works in performing some overall
user function?

• Is the system testable? (See later for a
discussion of designing for testability.)

Copyright 2004 -- Collard & Co. 12

Low-Level Design Validation

• Does this component-level design match
the high-level design, and serve its
functions?

• Does each component deliver its required
functions? Is the description of the
internal component algorithm or
processing correct?

Copyright 2004 -- Collard & Co. 13

Low-Level Design Validation

• Can existing components be adapted and
re-used, instead of creating new ones?

• Does each component comply with the
internal inter-component interfaces, as
described in the high-level design?

Copyright 2004 -- Collard & Co. 14

Low-Level Design Validation

• Are the data structures defined correctly
and used correctly by the components?

• Is the design under change control, with all
new or modified components and
interfaces identified clearly?

Copyright 2004 -- Collard & Co. 15

Low-Level Design Validation

• Does the detailed design provide sufficient
information for the programmers to build or
modify the system? Is this information
readable, understandable and
unambiguous in the eyes of the
programmers?

Copyright 2004 -- Collard & Co. 16

Design Rules of Thumb

• Cyclomatic complexity of components
should not exceed 10.

• Depth of nested-if decision logic <= 7.

• The depth of inheritance chains <= 7.

• The length of module calling chains <= 7.

• The average fan-out of the modules in a
design <= 7.

Copyright 2004 -- Collard & Co. 17

Contradictions in
Managing Complexity

• There are several inherent contradictions
in the rules of thumb which are used to
manage the complexity of a software
architecture.

• If the complexity of components is capped
at 10, this means that there will a greater
volume of components, so that it will be
more difficult to meet the other guidelines.

Copyright 2004 -- Collard & Co. 18

Basics of Effective Design

• Readability

• Completeness

• Visibility

• Modularity

• Cohesiveness

• Decoupling

Copyright 2004 -- Collard & Co. 19

Basics of Effective Design

• Traceability

• Necessity

• Consistency

• Feasibility

• Efficiency

• Portability

• Re-use Copyright 2004 -- Collard & Co. 20

Designing for Robustness

• Where can an error occur in the use of a
system?

• At each particular point in operation, what
kinds of errors could occur?

• Which possible errors are most critical
versus merely a nuisance?

• How can these errors be detected?
Copyright 2004 -- Collard & Co. 21

Designing for Robustness

• What alternative actions could be taken in
reaction to each possible error?

• How can errors be contained and not
propagate: their side effects are kept to a
minimum?

Copyright 2004 -- Collard & Co. 22

Designing for Robustness

• Controlled use of common routines and
working storage areas?

• Separate or decoupled processes for
activities which operate independently?

• Simplicity of design, the most
straightforward performance of functions?

• Simplicity of documentation, access and
understanding?

Copyright 2004 -- Collard & Co. 23

Designing for Robustness

• Simplicity of the interfaces?

• Continual monitoring and recording logs?

• Automatic error detection & diagnosis?

• Built-in error recovery?

• Visibility of actions?

Copyright 2004 -- Collard & Co. 24

Types of Error Handling

• Error avoidance tries to detect and
neutralize embedded, "sleeping" errors
before they become activated.

• Error masking uses redundant information
to cross-check and deliver the correct
service regardless of errors.

Copyright 2004 -- Collard & Co. 25

Types of Error Handling

• Back-up processes periodically preserve a
known correct state of a system for
possible later use in recovery.

• Roll-back mechanisms can be used to
return to this correct state, and the
recovery process then proceeds.

Copyright 2004 -- Collard & Co. 26

Error Recovery Mechanisms

• Automatically logging a copy of every
transaction and before-and-after
snapshots of updated stored data.

• Suspending an input transaction for later
manual review, correction and re-
submission.

Copyright 2004 -- Collard & Co. 27

Error Recovery Mechanisms

• Re-starting a system from a checkpoint.

• Checking the automatic switch-over to
redundant back-up systems.

• Ensuring that the error messages and
procedures are clear and usable by the
people who have to work with them.

Copyright 2004 -- Collard & Co. 28

Software vs. Hardware
Reliability

• Software reliability differs from hardware
reliability, as software failures do not occur
because of physical components age and
wear out.
– Hardware degrades over time because chips

fry, pins are broken off connectors, cables
fray and become electrically conductive, and
so on.

– Software cannot physically break.
Copyright 2004 -- Collard & Co. 29

Software vs. Hardware
Reliability

– Another important difference is that hardware
tends to be highly stable after manufacturing,
with little change. By contrast, software
continues to grow and evolve.

– As software ages, the primary cause of failure
becomes the modifications made to the
software. (This concept is called software
entropy.)

Copyright 2004 -- Collard & Co. 30

Fault Tolerant Systems

• Planned-in Redundancy

• Concurrent Parallel Processes

• Monitoring Processes

• Roll-Back Mechanisms

• Fault Tolerant Communications

Copyright 2004 -- Collard & Co. 31

Fault Tolerant Systems

• Fault Tolerant Data Bases (e.g., Mirroring)

• Self-Tuning Systems

• Self-Healing (Autonomic) Sysyems

Copyright 2004 -- Collard & Co. 32

Designing For Scalability

• Scalability is the capability of a system to
continue to expand or contract as the
needs change, and to provide acceptable
service as the demand or resources
change.

Copyright 2004 -- Collard & Co. 33

Designing For Maintainability

Copyright 2004 -- Collard & Co. 34

• (1) Quality of documentation.

• (2) User demands for enhancements.

• (3) Competing demands for the time of the
software engineers assigned.

• (4) Meeting scheduled commitments.

• (5) Inadequate training.

• (6) Turnover in the organizations.

Designing For Maintainability

• According to a study by the Software
Engineering Institute, programmers
introduce inadvertent new errors in 20% to
50% of all systems changes.

• (To be fair to maintenance programmers,
many of these defects are minor and are
caught almost immediately in compilation
and unit testing.)

Copyright 2004 -- Collard & Co. 35

Advantages in Working
with Existing Software

– Static code analyzers (path analyzers) can be
used to analyze the existing software.

– The system has already been heavily "field
tested" in production use and with real users.

– The prior operational experience with the
system and prior defects are known.

– Test data and facilities should be available.

Copyright 2004 -- Collard & Co. 36

Disadvantages easily
can Outweigh Advantages

Copyright 2004 -- Collard & Co. 37

– The people who really understood the system
have disappeared years ago.

– Seemingly simple and small changes to
existing systems can have unanticipated and
devastating side effects.

– Existing systems are often poorly understood,
a source of mystery to the people charged
with maintaining them and even to the day-to-
day users.

Disadvantages

– Not only are the design and code inscrutable, the
person who made the last few years' worth of patches
before disappearing apparently was a devotee of
voodoo.

– Because of the demand for fast turn-around times for
fixes or enhancements, there may be little time to
plan and develop tests.

– Existing documentation, such as the systems
technical description and the prior history of changes,
often is close to unusable.

Copyright 2004 -- Collard & Co. 38

Designing For Usability

• User-Centered Design

• Ease of Learning

• Ease of Use

• Error Processing

• Usability Error Checklists

Copyright 2004 -- Collard & Co. 39

Designing For Testability

• To be testable, a system has to be
observable and controllable.

• Just as systems can be designed to
exhibit desirable characteristics such as
maintainability and usability, they can be
designed for testability.\

Copyright 2004 -- Collard & Co. 40

Software Re-Use

Copyright 2004 -- Collard & Co. 41

• In its simplest form, software re-use is the
process of assembling and adapting
existing components.

• Extensions of the useful life:
– Software Re-Engineering
– Data Re-engineering
– Refactoring

Major Causes Of Defects:
(3) Programming

• Unstructured, highly coupled code

• Lack of fit to specifications (difficult to
avoid if the specs. are poor)

• High complexity

• Use of obscure language features

• Violations of programming standards

Copyright 2004 -- Collard & Co. 42

Major Causes: (3) Programming

• Hard-coded data values
• Insufficient change & version control, and

quick, ill-considered patches
• Lack of fault tolerance and robustness
• Inflexibility (code was built without

consideration for system maintenance)
• Computations and comparisons which use

inconsistent data
Copyright 2004 -- Collard & Co. 43

Major Causes: (3) Programming

• Data initialization (failure to explicitly
initialize or re-set)

• Shared data (accessed or updated by
more than one module or program)

• Pointers and indexes that could exceed
their expected ranges

• Possible field overflows (e.g., result field
smaller than largest value)

Copyright 2004 -- Collard & Co. 44

Major Causes: (3) Programming

• Incorrect interface assumptions (e.g., a
wrong set of parameters is passed)

• Entangled or “sloppy” loops

• Unintended fall-through conditions

• Nested conditions (e.g., ifs)

• Memory leaks

Copyright 2004 -- Collard & Co. 45

The Personal Software
Process (PSP)

• “Developing software products involves
much more than just stringing
programming instructions together and
getting them to run on a computer. It
requires meeting customer requirements
at an agreed cost and schedule....[PSP]
shows you how to do this.” Watts
Humphrey

Copyright 2004 -- Collard & Co. 46

The PSP

• Personal responsibility (e.g., committing to and meeting
deadlines)

• Personal commitment to quality

• Time management skills in the individual programmer,
including:
– Analyzing time consumption. (“Where did the time go?”.)\
– Personal planning. (“What do I need to do to accomplish this

goal?”.)
– Estimation. (“How big is this task?.)

• Defect prevention skills

Copyright 2004 -- Collard & Co. 47

Incident Analysis

• "Those who do not understand history are
condemned to repeat it." George
Santayana

• An organized method for learning from
defects in order to prevent the occurrence
of future similar defects.

Copyright 2004 -- Collard & Co. 48

Incident Analysis

• An analysis is performed and circulated for each
defect, and this analysis addresses the following
questions:

• How & when was the defect found?

• When was the defect made?

• Who made the defect? (this should only be
asked if the environment is a trusting one.)

• Why and how was the defect caused?
Copyright 2004 -- Collard & Co. 49

Incident Analysis
• What triggered the detection of the defect, or

initiated or enabled its occurrence?
• Why was the defect not discovered earlier?
• How could the defect have been prevented?
• How can we prevent similar defects in the

future?
• Where else might this same defect or similar

defects be embedded, and how can we find and
remove them?

Copyright 2004 -- Collard & Co. 50

Walkthrough Guidelines

• Walkthroughs occur continually throughout
a project

• No walkthrough is longer than 2 hours

• Do homework prior to walkthrough

• Egoless peer review: criticize work
product, not author

• Moderator keeps focus & pace
Copyright 2004 -- Collard & Co. 51

Advantages of Walkthroughs

Copyright 2004 -- Collard & Co. 52

• Can find defects very early

• Communication device within the team

• Expectation of peer review increases task
quality

• Helps track & ascertain project status

• Builds involvement in the project

• Can help build team spirit

Advantages of Walkthroughs

• Promotes consistency

• Shares expertise

• Trains people early in the functionality and
design

• Identifies opportunities for improved
practices

Copyright 2004 -- Collard & Co. 53

Next Steps

• Which ideas are valuable to you?

• How can you apply them?

• What support do you need?

Copyright 2004 -- Collard & Co. 54

	BUILDING ROBUSTSOFTWARE
	Current State of the Practice
	TKQ (the key question)
	Major Causes of Defects: (1) Specifications
	Major Causes: (1) Specs
	Major Causes of Defects: (2) Design
	Major Causes: (2) Design
	Major Causes: (2) Design
	High-Level Design Validation
	High-Level Design Validation
	High-Level Design Validation
	High-Level Design Validation
	Low-Level Design Validation
	Low-Level Design Validation
	Low-Level Design Validation
	Low-Level Design Validation
	Design Rules of Thumb
	Contradictions inManaging Complexity
	Basics of Effective Design
	Basics of Effective Design
	Designing for Robustness
	Designing for Robustness
	Designing for Robustness
	Designing for Robustness
	Types of Error Handling
	Types of Error Handling
	Error Recovery Mechanisms
	Error Recovery Mechanisms
	Software vs. Hardware Reliability
	Software vs. HardwareReliability
	Fault Tolerant Systems
	Fault Tolerant Systems
	Designing For Scalability
	Designing For Maintainability
	Designing For Maintainability
	Advantages in Workingwith Existing Software
	Disadvantages easilycan Outweigh Advantages
	Disadvantages
	Designing For Usability
	Designing For Testability
	Software Re-Use
	Major Causes Of Defects: (3) Programming
	Major Causes: (3) Programming
	Major Causes: (3) Programming
	Major Causes: (3) Programming
	The Personal Software Process (PSP)
	The PSP
	Incident Analysis
	Incident Analysis
	Incident Analysis
	Walkthrough Guidelines
	Advantages of Walkthroughs
	Advantages of Walkthroughs
	Next Steps

