
Accounting for User Abandonment in
Performance Tests

(This paper has been adapted from “Accounting for User Abandonment”, Part 4 of the
made for Rational Developers Network article series “Beyond Performance Testing”. The
remainder of the currently completed articles in this series are available at
www.rational.net and www.perftestplus.com)

By Scott Barber

"You should simulate user abandonment as realistically as possible. If you don’t, you’ll
be creating a type of load that will never occur in real life—and creating bottlenecks that
might never happen with real users. At the same time, you will be ignoring one of the
most important load testing results: the number of users that might abandon your Web
site due to poor performance. In other words, your test might be quite useless.”

-“Trade Secrets from a Web Testing Expert”
http://www.keynote.com/downloads/articles/tradesecrets.pdf Alberto Savoia, for STQE

Magazine May/June 2001

In this paper, we will explore performance testing issues related to user abandonment and
how to create realistic user abandonment models. User abandonment is an area that is not
commonly discussed when developing and analyzing performance tests. The intent of
this paper is to expand on concepts introduced in Alberto Savoia’s article quoted above.

User Abandonment

Before reading Alberto Savoia ‘s “Trade Secrets from a Web Testing Expert” a few years
back, I did not consider user abandonment in my testing. After reading his article, I
expanded on what I read and applied it in my own testing. What you are about to read
paraphrases and extends Savoia’s ideas about user abandonment presented in his article.
So, having said all that, I get to explain to you in my words what user abandonment is
(which is challenging since, I just reread Savoia’s article and liked his words just fine).
User abandonment, most simply, is when a user gets frustrated with a site, usually due to
performance, and discontinues using that site, either temporarily or permanently. As we
are all aware, different users have different tolerance levels for performance. The
reasons users abandon are based on some of the same factors that we consider when we
talking about determining performance requirements. Let’s start by discussing why users
abandon sites, how to determine their tolerances, and how to build an accurate user
abandonment model for a particular website.

User Psychology

Abandonment is all about user psychology. One could make a case that the other topics I
address below, usage considerations and user expectations, are just subsets of the rather

broad topic of user psychology. When it comes to abandonment, user psychology is
more than just “Why do we abandon sites?” That answer is simple. “Because we get
tired of waiting.” The answer to the follow up question, however, is not so simple: “Why
do we get tired of waiting?” Why do I get tired of waiting and subsequently decide to
abandon? Here are a few of my common reasons.

- The site is just painfully slow
- I lose interest while waiting for a page to download
- I get distracted during download
- I figure I can find it somewhere else faster
- I just plain get bored
- While waiting I checked my email and forgot to go back

While all of those things can be summarized as “the site is too slow”, the quantification
of “too slow” can vary depending on the particular context. For instance, after about 8-
10 seconds I start getting bored and move to another browser window. 8-10 seconds is
not painfully slow, but it is slow enough to risk me abandoning.

Unlike when talking about performance requirements, the kind of user psychology we are
talking about here is extremely variable, not only between different users, but between
different visits by the same user. A user’s tolerance might change dramatically from
session to session. While this makes it even harder to predict when an individual might
abandon, it also means that abandonment is more likely to follow standard distribution
models such as normal or negative exponential distributions. We will discuss these in
more detail below.

Usage Considerations

Usage considerations are even more relevant in user abandonment than they are to
determining performance requirements. In previous a previous article, I shared my
experience with filing my federal income tax return on line. I mentioned that I was more
tolerant of slowness because my expectations had been set properly. While expectation
setting may help keep me from getting annoyed as quickly, I wasn’t going to abandon
that site no matter how slow it got. The thought of losing my return and having to start
over, or having an incomplete return submitted that might lead to me being audited would
have kept me from abandoning. In contrast, when I am catching up on the news I’ll
abandon one site and check another long before I’ll wait on a slow site.

When thinking about usage considerations, we are really talking about how much longer
than a users typical tolerance they are willing to wait before abandoning. Usage
considerations are actually little more than factors that we apply to a persons ‘typical’
tolerance based on the perceived importance of the activity being performed on line.
Importance is a vague term that may apply in cases such as:

- Real or perceived loss of money as a result of not completing the transaction.

- Concern that inaccurate information will be submitted if the transaction is not
completed.

- Not having an alternative means to accomplish the task at hand.
- Having a real or perceived deadline to complete the transaction.

Below we will discuss how we will determine and apply this “importance factor” to our
abandonment solution.

It is worth noting that not all sites will have a real abandonment model. Many web-based
applications that my co-workers and I have tested in the past are exclusively for internal
audiences that have no choice but to wait. Take, for example, my current client. They
have a policy that all employees (and consultants) must enter the hours they worked that
week between noon and 5pm every Friday – unless they are not working that day, in
which case they are required to notify their managers of what hours they worked so the
manager can enter them into the system. With roughly 3500 employees and consultants
accessing this system over a 5 hour period on top of the “typical traffic”, this gets very
slow. Under other circumstances, I would abandon the site and try later or go somewhere
else. In this case, I have no choice but to wait. In this case, there is no abandonment
model. I think this is the exception rather than the rule, but a common enough exception
to point it out.

User Expectations

I have already mentioned user expectations in this paper. Abandonment is
unquestionably affected by user expectations. My experience submitting my tax return is
a prime example. The difference here is that in most cases we don’t get to manage user
expectations; rather, their expectations drive (or at least should drive) our requirements.
We probably don’t have the ability to poll the potential users of the system with a
questionnaire like:

- What speed connection do you use?
- How fast to you expect this Web site to be?
- How long will you wait before abandoning your session?

If polling a subset of potential users is possible, we should probably do it. But, if we
can’t, how do we account for user expectations? Our best bet is to evaluate what the
potential users are using now for the same activity and assume that they will become
frustrated if this solution is noticeably (let’s say 20% or more) slower than what they are
using now. This is not a hard science, but doing this will give us a place to start while
deriving our abandonment model. Hopefully, this thought process was part of your
requirements gathering process and contributed to your overall performance
requirements. If you collected requirements well I submit that your users’ expectations
should be (statistically speaking) equivalent to the performance requirement associated to
that page, meaning that if the requested page downloads within the time specified in the
performance requirements that user will not abandon the site for performance reasons.

System Non-response

Ultimately, no matter how patient a user may be, sometimes a Web site simply fails to
respond. While this doesn’t technically count as user abandonment (since they didn’t
make the choice to abandon, the Web site technically abandoned them) it does provide
the upper bound for how long a user could potentially wait before ceasing their web
surfing session. I’m using non-response as a catch-all term to cover such issues as:

- Secure session time out (requiring users to either abandon or start over).
- Browser “page cannot be displayed” timeout errors.
- Temporary (or permanent) Internet connectivity interruptions on either end.

Most load generation tools assume this category is the only time abandonment occurs.
As Savoia notes in his article, this is highly misleading when trying to predict production
level performance accurately. That is not to discount this category, but rather to put it in
perspective with the entire picture of user abandonment.

Determining Abandonment Parameters

We’ve talked about factors that contribute to our abandonment model. These factors can
be summarized into the following abandonment parameters:

- Performance Requirement
- Importance Factor
- Abandonment Distribution
- Absolute Abandon Time

Putting these factors into the table below will help organize them so we can easily make
decisions about our ultimate abandonment model.

Table 1: Abandonment Model Parameters (unpopulated)

For our purposes, I have entered five pages that we will determine user abandonment
parameters for. These pages do not model any site in particular, but are samples of page
types that have different abandonment parameters. Table 2 shows the populated version

of this table. Take a moment to review the table and then we will discuss how the
parameters were determined.

Table 2: Abandonment Model Parameters (populated)

The Performance Requirement column is straight forward – simply copy the performance
requirement from wherever you have it documented. If you have multiple requirements
based on user connection speed you will want to follow this process and ultimately create
an abandonment model for each connection speed.

You will see that the Importance Factor column isn’t very scientific. It is simply a
common sense assessment of the user perceived importance of that particular activity
being accomplished before they abandon. You can certainly poll users and stakeholders
to obtain this information, but I wouldn’t spend the time to get more scientific than the 4-
tier rating system (low, medium, high and very high) used here.

In the Abandonment Distribution column you will see the standard distribution types that
we discussed earlier. If you are not familiar with these distributions, refer to User
Experience, not Metrics: Part 2 “Modeling Individual User Delays”. In fact, either a
Normal (bell curve) or Uniform (linear) distribution will be most accurate in the majority
of cases. All of you who have ever taken a statistics or psychology course know that
almost everything that real human beings do (over a large enough sample) can be
represented by a bell curve. You may also recall that the key to an accurate bell curve is
the standard deviation. We know two things about standard deviations when it comes to
web usage 1) they are exceptionally large (statistically) in comparison to the range of
values and 2) they are almost impossible to calculate accurately by non-mathematicians.
What that means is that in most cases we actually end up with a very “flat” bell curve
that, in effect, approaches a linear distribution. Statistics aside, if you don’t have a strong
reason to do otherwise, choose between either a Normal or Uniform distribution based on
your best judgment.

The Negexp (logarithmic, or one-tailed) distribution is much less common. The two
examples I use here might even be a bit artificial, but bear with me. As I have
mentioned, I was willing to wait as long as it took to submit my taxes, but if the
performance had gotten bad enough, eventually the system would have ceased
responding and I would have effectively abandoned. While it is likely that I would
actually have waited until the system timed out, I might have abandoned sooner if I
believed the system was not responding. This situation is represented by a one-tailed

distribution where a few users may abandon in a short period of time, but most users
“hang in there” as long as possible.

The other example I have used is field population. What I mean by field population is
when you are presented with a form and you start entering data and, for example, you
chose a value from a dropdown and a whole bunch of other values on that form are
automatically populated for you. Usually you don’t even expect this to happen, but as
long as it happens quickly (and the values that appear are correct) you don’t mind – or at
least, I don’t. However, if it doesn’t happen quickly all you know is that your page is
frozen and you can’t enter data in the next field (or worse, you can enter data, but it gets
erased when the screen finally does refresh). That situation will cause users to abandon
the site faster than any other situation I can think of. That is why I chose to represent
user abandonment of that activity with a logarithmic distribution that has most people
abandoning quickly and only a few people “hanging in there”, that we call an Inverse
Negative Exponential distribution.

Finally, we get to the Absolute Abandonment column. This is the most scientific of the
parameters. This is simply the time after which either your browser stops waiting for a
response (in this case 120 seconds) or your secure session expires and you have to start
your session over (in this case 900 seconds, or 15 minutes). To determine these numbers,
simply ask the architect/developer responsible for the presentation tier (or web server) to
provide you with the information.

Creating an Abandonment Model

Now we get to create the actual abandonment model based on those parameters. This is
really pretty simple process. If we ignore the Importance Factor, we are actually already
there. See Table 3.

Table 3: Abandonment Model – Minus Importance Factor

As you will see below, when we discuss how to apply this model in load generation
scripts this is all of the information we need in our abandonment model. The tricky part
is applying the Importance Factor. I have tried to come up with a “magic formula” for
applying the Importance Factor, but it always became overly cumbersome and not
particularly universally applicable. If you’ve been following either of my series’ you

know that I like to keep things as simple as possible so, instead of formulas, table 4
shows some general guidelines to applying the Importance Factor.

Table 4: Importance Factor Application Guidelines

Allow me to stress, these are guidelines; ensure you apply a healthy dose of common
sense when applying these factors and take the context of your particular situation into
account. There are two notes I want to make about these guidelines. First, you will
notice that the Min Time Factor for Low Importance and the Absolute Time Factor for
Very High Importance are both 1. This is by definition in our model. If you find
yourself wanting to change those factors, consider re-assessing your parameters rather
than the Importance Factor. Second, you will notice that for small ranges, applying these
factors blindly could result in the Min Time being larger than the Absolute (max) Time.
If this happens, simply revise the Importance Factors and re-calculate until your Min is
once again smaller than your Absolute.

Applying those factors exactly to our abandonment model we come up with the model
shown in Table 5. Take a moment to review the chart and form your own opinions about
the times as they are listed.

Table 5: Abandonment Model – Exact Importance Factor

As I review Table 5, I am quite comfortable with those values… except two. I do not
believe that anyone is going to wait 450 seconds (7.5 minutes) for confirmation of a bill
payment. This is probably because the session keep-alive is configured for longer than it
needs to be (15 minutes vs. maybe 5 minutes), but assuming that configuration is non-

negotiable, I am simply going to arbitrarily change the Absolute Abandonment value for
Pay Bill to 240 sec. I also do not believe anyone is going to wait 60 seconds for some
fields to dynamically populate, so I am going to change that value to 20 seconds.

Does that mean that I disagree with my own guidelines? I don’t think so. I think it just
means that I am taking a step back to look at my model in the context of the unique
aspects of the system I am modeling. (I strongly recommend that everyone take the time
to do that throughout their projects.)

Finally, Table 6 shows the model that we will apply to our example script.

Table 6: Abandonment Model – Modified for Context

Effects of Abandonment on Performance Testing

Before I show you how to adapt your scripts to abide by the model we just created, let’s
pause for a minute to consider the effects of user abandonment on performance testing.
As important as I think abandonment is to include in performance testing, I don’t think it
should be done blindly. Consider the following.

Not accounting for Abandonment

So what happens if we just don’t account for abandonment at all? Simple – the script
will wait forever to receive the page or object it requested. When it eventually receives
that object, it moves on to the next object like nothing ever happened. If the object is
never received, your script never ends. I can think of no value this adds to the
performance testing effort – unless you have some need to show a stakeholder “Under the
conditions you specified, the average pageload time was roughly 2.5 hours.”
Unfortunately, we do occasionally have to do something like that to make a point;
however, that is exactly what we are doing in a case like that – making a point by using
ridiculous and meaningless numbers. That is not a performance test, nor does it get you
any closer to delivering a quality, well performing application.

The previous example is, of course, a worst case. If you do not account for abandonment
and virtually none of your pageload times exceed your requirements then your test was
perfectly accurate (in terms of abandonment simulation)… by accident. Don’t settle for

being correct by accident, take the extra few minutes to include abandonment in your
performance tests and have the confidence that your results are honestly accurate as
opposed to accidentally representative.

Mis-accounting for Abandonment

Mis-accounting for abandonment is what load generation tools do by default. They
assume that all users “abandon” at a pre-determined, yet still continue on requesting the
following page like nothing happened. Of course, you can change settings to improve
that by changing the time limit, or having the virtual user actually exit; but that is still not
context specific by page. If you were really motivated, you could change the parameters
before every request based on how long you think a user would wait for that particular
object, but that still won’t account for the page as a whole. Regardless, improper
accounting for abandonment can result in results even more misleading than not
accounting for abandonment at all. To support this statement, let’s consider a few
examples and their side-effects.

1) “At 240 seconds stop trying to get this object, log a message and move on to the
next object” – If you have objects taking over 240 seconds to load this causes
situations where subsequent objects may need previous objects to have loaded
successfully and may cause unexpected errors because the tool is now “forcing”
the application to serve pages that a real user could not have realistically reached.
This will also skew page and object load times, because you don’t actually know
how long the object would have taken to load – yet that 240 seconds is calculated
as if the download is successful. Worst of all, the subsequent errors normally
mask the initial cause making it appear as if the script is flawed. This is all not to
mention the additional load be applied after the timeout (that a real user would not
be applying) that may be skewing your results.

2) “Just log when people would have abandoned for analysis, don’t actually exit the
virtual user.” – While this may be useful during early testing (discussed in more
detail below), it paints a very inaccurate picture of the actual abandonment rate
for a laundry list of reasons, including:

a. Once a virtual user gets one page slow enough to abandon, they usually
get more if not exited, resulting in statistics showing an artificially high
abandonment rate.

b. Allowing a virtual user to continue that would have abandoned, keeps the
current load on the system rather than letting them stop using the system
and reducing the total load for others, which is going to cause more virtual
users to experience response times in the abandon range, once again
resulting in statistics showing an artificially high abandonment rate.

c. If the abandonment level response time was actually do to an error,
subsequent page requests may also produce errors making the actual
problem (one slow page) much more difficult to detect.

Do note that we are talking about grossly misrepresenting real abandonment. Mis-
modeling the abandonment ranges by a few seconds is not going to cause this kind of
problem. Your abandonment model needs to be reasonable, not perfect.

Correctly accounting for Abandonment

Correctly accounting for abandonment provides some extremely valuable information to
all of the stakeholders of the system and allows you to collect data to evaluate
abandonment requirements, but those are far from the only benefits. For instance, with
correctly accounted for abandonment you can see how your system/application behaves
as the load grows. One of the great things about web sites is that if the load gets too great
for the system/application to handle, it slows down, then people abandon, thus decreasing
the load until the system speeds back up to acceptable rates. Imagine what would happen
if, once the site got slow, it stayed slow until someone “fixed the server”. Luckily,
abandonment relieves us of that situation, at least most of the time. Assuming that the
site performs “well enough” with a “reasonable” load, performance is generally self-
policing. Unfortunately, this is at a cost of some lost customers/users.

I mentioned a minute ago that just logging potential abandonment and not exiting the
virtual user may be useful during early testing. This is true for several reasons. For
example, let’s say that you have an abandonment model that says all users will abandon if
they encounter a page load time of 30 seconds, but your site (under development) is
taking an average of 45 seconds to return a page, even at very low user loads. You will
still want your scripts to run all the way through to gather information and create system
logs to help track down the reason the times are so slow. In this situation, abandoning all
of the virtual users when they hit the homepage gives you no information to help tune the
system. Use your best judgment early in testing about whether to just log or actually exit
users when they reach the abandonment response time, but always exit users when you
are executing test intended to predict the experience of real users in production.

Interpreting results

There are a few things I wanted to point out about interpreting results, even though this
paper won’t go into much detail.

1) Check your abandonment rate before you evaluate your response times. If your
abandonment rate for a particular page is less than about 5%, look for and handle
outliers. If your abandonment rate for a particular page is more than about 5%,
you probably have a problem worth researching further on that page.

2) Check your abandonment rate before drawing conclusions about load.
Remember, every user that abandons is not applying load. Your response time
statistics may look good, but if you have 25% abandonment, your load may be
25% lighter than you were expecting.

3) If your abandonment rate is over about 20% consider “turning off” the exit feature
and re-executing the test to help gain information about what is causing the
problem.

Summing It Up

In this paper, we have explored the premise of user abandonment and determined how to
model it.

Alberto Savoia concluded his 2001 article with this:

“When you adopt concurrent users as a load testing input parameter and fail to account
for user abandonment you run the risk of creating loads that are highly unrealistic and
improbable. As a result, you may be confronted with bottlenecks that might never occur
under real circumstances.”

It is now 2003 and user abandonment is still a relatively unheard of topic. I hope this
paper will help increase awareness and encourage people to avoid the mistake of not
taking abandonment into account during their performance testing.

Acknowledgements

Special thanks to Alberto Savoia for taking the time to review the article this paper has
been adapted from.

About the Author

Scott Barber is a senior consultant for Noblestar and a member of Noblestar’s specialty
testing lab, NobleLabs. NobleLabs provides a variety of services in such areas as
performance engineering, security engineering, and embedded device interoperability
testing. With a background in network architecture, systems design, database design and
administration, programming, and management, Scott has become a recognized thought
leader in the field of performance engineering. Before joining Noblestar, he was a
company commander in the United States Army and a government contractor in the
transportation industry. Scott is an active participant on the Rational Developers Network
Forums, and is a moderator for the performance testing and Rational TestStudio related
forums on QAForums.com. Scott has built a website that compliments this series that
you may visit at http://www.perftestplus.com to find more detail on some topics and view
slides from various presentations he has given recently. You may address
questions/comments to him on either forum or contact him directly via e-mail.

